Ngspice User’s Manual
Version 35
(ngspice release version)

Holger Vogt, Marcel Hendrix, Paolo Nenzi, Dietmar Warning

August 8th, 2021

Locations

The project and download pages of ngspice may be found at
Ngspice home page http://ngspice.sourceforge.net/
Project page at SourceForge http://sourceforge.net/projects/ngspice/

Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice-
rework/

Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/

Status

This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely
needed. You are invited to report bugs, missing items, wrongly described items, bad
English style, etc.

How to use this Manual

The manual is a “work in progress.” It may accompany a specific ngspice release, e.g.
ngspice-24 as manual version 24. If its name contains ‘Version xxplus’, it describes the
actual code status, found at the date of issue in the Git Source Code Management (SCM)
tool. This manual is intended to provide a complete description of ngspice’s functionality,
features, commands, and procedures. This manual is not a book about learning SPICE
usage, however the novice user may find some hints how to start using ngspice. Chapter
21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is
about compiling and installing ngspice from a tarball or the actual Git source code, which
you may find on the ngspice web pages. If you are running a specific Linux distribution,
you may check if it provides ngspice as part of the package. Some are listed here.

License

This document is covered by the Creative Commons Attribution Share-Alike (CC-BY-SA)
v4.0..

Part of chapters 12 and 25-27 are in the public domain.
Chapter 30 is covered by New BSD (chapt. 33.3.2).

http://ngspice.sourceforge.net/
http://sourceforge.net/projects/ngspice/
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/
http://ngspice.sourceforge.net/download.html
http://ngspice.sourceforge.net/packages.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Part 1

Ngspice User’s Manual

Contents

I Ngspice User’s Manual

1 Introduction
1.1 Simulation Algorithms L
1.1.1 Analog Simulation
1.1.2 Device Models for Analog Simulation
1.1.3 Digital Simulation o
1.1.4 Mixed-Signal Simulation
1.1.5 Mixed-Level Simulation,
1.2 Supported Analyses
1.2.1 DC Analysis
1.2.2 AC Small-Signal Analysis
1.2.3 Transient Analysis
1.2.4 Pole-Zero Analysis
1.2.5 Small-Signal Distortion Analysis
1.2.6 Sensitivity Analysis o
1.2.7 Noise Analysis
1.2.8 Periodic Steady State Analysis.
1.3 Analysis at Different Temperatures
1.4 Convergence
1.4.1 Voltage convergence criterion
1.4.2 Current convergence criterion
1.4.3 Convergence failure
2 Circuit Description
2.1 General Structure and Conventions
2.1.1 Input file structureo

2.1.2 Syntax check

33
34
34
34
35
35
36
37
37
38
38
39
39
39
40
40
40
42
42
43
43

CONTENTS

2.1.3 Circuit elements (device instances) 46
2.1.4 Some naming conventions A7
2.2 Dot commands 48
2.3 Basiclines 50
231 TITLE line e 20
232 ENDLine. o1
233 Comments 51
2.3.4 End-of-line commentso 51
2.3.5 Continuation lines 52
2.4 MODEL Device Models 52
2.5 .SUBCKT Subcircuits 53
25.1 SUBCKT Line o 54
252 ENDSLine 55
2.5.3 Subcircuit Callso 55
2.6 .GLOBAL 55
2.7 INCLUDE 56
2.8 LIB . . . 56
2.9 .PARAM Parametric netlists L 56
2.9.1 .param line 57
2.9.2 Brace expressions in circuit elements:o o7
2.9.3 Subcircuit parameters 58
2.9.4 Symbolscope 59
2.9.5 Syntax of expressions 59
2.9.6 Reserved words 62
2.9.7 A word of caution on the three ngspice expression parsers. 62
2.10 .FUNCo 62
2.11 .CSPARAM e 63
212 ' TEMP . . . oo 63
2.13 .IF Condition-Controlled Netlist 64
2.14 Parameters, functions, expressions, and command scripts 66
2.14.1 Parameters 66
2.14.2 Nonlinear sourceso 66

2.14.3 Control commands, Command scripts 66

CONTENTS

3 Circuit Elements and Models
3.1 About netlists, device instances, models and model parameters .
3.2 General options Lo
3.2.1 Paralleling devices with multiplierm
3.2.2 Instance and model parameters
3.2.3 Model binning 0oL
3.2.4 Initial conditions 0oL
3.3 Elementary Devices oL
3.3.1 Resistors
3.3.2 Semiconductor Resistors
3.3.3 Semiconductor Resistor Model (R)
3.3.4 Resistors, dependent on expressions (behavioral resistor)
3.3.50 Resistor with nonlinear r2 cmc model
3.3.6 Capacitors
3.3.7 Semiconductor Capacitors

3.3.8 Semiconductor Capacitor Model (C)

3.3.9 Capacitors, dependent on expressions (behavioral capacitor)

3.3.10 Inductorso
3.3.11 Inductor modelo
3.3.12 Coupled (Mutual) Inductors
3.3.13 Inductors, dependent on expressions (behavioral inductor)
3.3.14 Capacitor or inductor with initial conditions
3.3.15 Switches L
3.3.16 Switch Model (SW/CSW)

4 Voltage and Current Sources
4.1 Independent Sources for Voltage or Current
4.1.1 Pulse.
4.1.2 Sinusoidal
4.1.3 Exponential
4.1.4 Piece-Wise Linear
4.1.5 Single-Frequency FM
4.1.6 Amplitude modulated source (AM)
4.1.7 Transient noise source

4.1.8 Random voltage source

69
69
70
70
72
73
73
74
74
76
76
78
78
79
80
80
82
83
84
85
86
87
88
89

8 CONTENTS
4.1.9 External voltage or current input 97
4.1.10 Arbitrary Phase Sources L. 98

4.2 Linear Dependent Sources 98
4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS) 98
4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS) 99
4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS) 99
4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS) 99
4.2.5 Polynomial Source Compatibility 100

5 Non-linear Dependent Sources (Behavioral Sources) 101

5.1 Bxxxx: Nonlinear dependent source (ASRC) 101
5.1.1 Syntax and usage 101
5.1.2 Special B-Source Variables time, temper, hertz 105
5.1.3 par(expression’) 105
5.1.4 Piecewise Linear Function: pwl 105

5.2 Exxxx: non-linear voltage source L. 108
521 VOL e 108
522 VALUE 108
523 TABLE 108
524 POLY e 109
52.5 LAPLACE. e 109

5.3 Gxxxx: non-linear current source 110
531 CUR e 110
532 VALUE 110
5.3.3 TABLE 111
534 POLY e 111
535 LAPLACE. e 111
5.3.6 Exampleo 111

5.4 Debugging a behavioral source 112

5.5 POLY Sources 113
5.5.1 E voltage source, G current source 114

5.5.2 F voltage source, H current source 114

CONTENTS 9

6 Transmission Lines 117
6.1 Lossless Transmission Lines 117
6.2 Lossy Transmission Lines 118

6.2.1 Lossy Transmission Line Model (LTRA) 118
6.3 Uniform Distributed RC Lines 120
6.3.1 Uniform Distributed RC Model (URC) 120
6.4 KSPICE Lossy Transmission Lines 121
6.4.1 Single Lossy Transmission Line (TXL) 122
6.4.2 Coupled Multiconductor Line (CPL) 122

7 Diodes 125
7.1 Junction Diodes 125
7.2 Diode Model (D) 126
7.3 Diode Equations 128

8 BJT 133
8.1 Bipolar Junction Transistors (BJTs) 133
8.2 BJT Models (NPN/PNP) 133

8.2.1 Gummel-Poon Models 134
822 VBIC Model. 139
8.2.3 MEXTRAM Model 141
8.2.4 HICUM level 2 Model 141
8.2.5 HICUM level 0 Model 143

9 JFETs 145
9.1 Junction Field-Effect Transistors (JFETs) 145
9.2 JFET Models (NJE/PJF) 145

9.2.1 Basic model statement00 145
9.2.2 JFET level 1 model with Parker Skellern modification 145
9.2.3 JFET level 2 Parker Skellern model 148

10 MESFETs 151
10.1 MESFETs e 151
10.2 MESFET Models (NMFE/PMF) 151

10.2.1 Basic model statements. 151
10.2.2 Model by Statze.a.o 151
10.2.3 Model by Ytterdalea. 152
10.2.4 hfetl 152

1025 hfet2 . . . 0oL 153

10

11 MOSFETs

11.1 MOSFET devices
11.2 MOSFET models (NMOS/PMOS)
11.2.1 MOS Level 1
11.22 MOS Level 2o o
11.2.3 MOS Level 3
11.24 MOS Level 6
11.2.5 Notes on Level 1-6 models
11.2.6 MOS Level 9,
11.2.7 BSIM Models
11.2.8 BSIM1 model (level 4)
level 5)o
levels 8,49)
11.2.11 BSIM4 model (levels 14, 54)
11.2.12EKV2.6 Model
11.2.13PSP Model
11.2.14 BSIMSOI models (levels 10, 58, 55, 56, 57)
11.2.15S0I3 model (level 60)
11.2.16 HiSIM models of the University of Hiroshima
11.3 Power MOSFET model (VDMOS)

11.2.9 BSIM2 model

(
(
11.2.10 BSIM3 model (
(

12 Mixed-Mode and Behavioral Modeling with XSPICE

12.1 Code Model Element & .MODEL Cards
12.1.1 Syntaxo
12.1.2 Exampleso
12.1.3 Search path for file input

12.2 Analog Models
1221 Gaino
12.2.2 Summer
12.2.3 Multiplier
12.2.4 Divider.o
12.2.5 Limiter.o o
12.2.6 Controlled Limiter
12.2.7 PWL Controlled Source
12.2.8 Filesource (PWL sourced from file)

CONTENTS

155

CONTENTS 11

12.2.9 multi_input_pwlblocko 190
12.2.10 Analog Switch Lo 191
12.2.11 Alternative Analog Switch 192
12.2.127Zener Diodeo 194
12.2.13 Current Limiter 195
12.2.14 Hysteresis Block oo 198
12.2.15 Differentiatoro 199
12.2.16Integrator oL 201
12.2.17S-Domain Transfer Function 202
12.2.18Slew Rate Block 205
12.2.191Inductive Coupling 206
12.2.20 Magnetic Core Lo 207
12.2.21 Controlled Sine Wave Oscillator 211
12.2.22 Controlled Triangle Wave Oscillator 212
12.2.23 Controlled Square Wave Oscillator 213
12.2.24 Controlled One-Shot 214
12.2.25 Capacitance Meter 217
12.2.26 Inductance Meter oL 217
12.2.27Memristoro Lo 218
12.2.282D table model oo 219
12.2.293D table model oo 221
12.2.30 Simple Diode Model 223
12.2.31 Analog delay 225
12.3 Hybrid Models 226
12.3.1 Digital-to-Analog Node Bridge 226
12.3.2 Analog-to-Digital Node Bridge 228
12.3.3 Controlled Digital Oscillator 229
12.3.4 Node bridge from digital to real with enable 230
12.3.5 A Z**-1 block working on real data 231
12.3.6 A gain block for event-driven real data 231
12.3.7 Node bridge from real to analog voltage 232
12.4 Digital Models 233
1241 Buffer 233
12.4.2 Inverter L 234

1243 And 235

12 CONTENTS
1244 Nand 236
1245 Or . . . o 237
124.6 Nor. 238
12.4.7 Xor 239
1248 Xnoro 240
12.4.9 Tristate 241
12410Pullup oo 243
124.11Pulldown 243
12.412D Flip Flop 244
124.13JK Flip Flop 246
12.4.14Toggle Flip Flop 248
12.4.15Set-Reset Flip Flop L. 250
12416 D Latch oL 253
12.4.17Set-Reset Latch 255
12.4.18 State Machine o 257
12.4.19Frequency Dividero o 261
12420RAM o 262
12.4.21 Digital Source 264
124.22LUT . . 0 oo 266
12.4.23 General LUT 000 o 267

12.5 Predefined Node Types for event driven simulation 269
12.5.1 Digital Node Type L 269

12.5.2 Real Node Type o 269

12.5.3 Int Node Type 270

12.5.4 (Digital) Input/Output00 270

13 Verilog A Device models 271
13.1 Introduction 271
13.2 ADMS e 271
13.3 How to integrate a Verilog-A model into ngspice 271
13.3.1 How to setup a *.va model for ngspice 271

13.3.2 Adding admsXml to your build environment 272

13.3.3 Compile ngspice with ADMS 272

14 Mixed-Level Simulation (ngspice with TCAD) 273
14.1 Cider o 273

14.2 GSS, Genius e 274

CONTENTS 13

15 Analyses and Output Control (batch mode) 275
15.1 Simulator Variables (.options) 275
15.1.1 General Options. 276
15.1.2 OP and DC Solution Options 277
15.1.3 AC Solution Options 278
15.1.4 Transient Analysis Options. 279
15.1.5 ELEMENT Specific options 280
15.1.6 Transmission Lines Specific Options 280
15.1.7 Precedence of option and .options commands 280

15.2 Imitial Conditions 281
15.2.1 .NODESET: Specify Initial Node Voltage Guesses 281
15.2.2 IC: Set Initial Conditions 281

15.3 Analyses L 282
15.3.1 .AC: Small-Signal AC Analysis 282
15.3.2 .DC: DC Transfer Function 283
15.3.3 .DISTO: Distortion Analysis 284
15.3.4 .NOISE: Noise Analysis 286
15.3.5 .OP: Operating Point Analysis 287
15.3.6 .PZ: Pole-Zero Analysis. 288
15.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis 288
15.3.8 .TF: Transfer Function Analysis 289
15.3.9 .TRAN: Transient Analysis 289
15.3.10 Transient noise analysis (at low frequency) 290
15.3.11.PSS: Periodic Steady State Analysis 293

15.4 Measurements after AC, DC and Transient Analysis 294
15.4.1 meas(ure) 294
15.4.2 batch versus interactive mode L 294
15.4.3 General remarks 294
15.4.4 Input. e 295
15.4.5 Trig Targ o 296
15.4.6 Find ... Wheno 297
15.4.7 AVG|MIN|MAX|PP|RMS|MIN_ATIMAX_AT 298
15.4.8 Integ 299
15.4.9 paramo 299

15.4.10 par(’expression”) 299

14 CONTENTS
15411 DDeriv . . . o L 300
15.4.12More exampleso 300

15.5 Safe Operating Area (SOA) warning messages 301
15.5.1 Resistor and Capacitor SOA model parameters 302
15.5.2 Diode SOA model parameter 302
15.5.3 BJT SOA model parameter 302
15.5.4 MOS SOA model parameter 302

15.6 Batch Output 303
15.6.1 .SAVE: Name vector(s) to be saved in raw file 303
15.6.2 .PRINT Lines 304
15.6.3 .PLOT Lines 304
15.6.4 .FOUR: Fourier Analysis of Transient Analysis Output 305
15.6.5 .PROBE: Name vector(s) to be saved in raw file 306
15.6.6 par(’expression’): Algebraic expressions for output. 306
15.6.7 .width 307

15.7 Measuring current through device terminals 307
15.7.1 Adding a voltage source in series 307
15.7.2 Using option ’savecurrents’ 307

16 Starting ngspice 309

16.1 Introduction 309

16.2 Where to obtain ngspice Lo 309

16.3 Command line options for starting ngspice 310

16.4 Starting optionso 312
16.4.1 Batchmode 312
16.4.2 Interactive mode 312
16.4.3 Control mode (Interactive mode with control file or control section) 313

16.5 Standard configuration file spinito 314

16.6 User defined configuration file .spiceinit 315

16.7 Environmental variables o000 oo 315
16.7.1 Ngspice specific variables 315
16.7.2 Common environment variables 316

16.8 Memory usageo 316

16.9 Simulation time 317

16.10Ngspice on multi-core processors using OpenMP 317

CONTENTS 15

16.10.1Introduction 317
16.10.2Internalso 318
16.10.3Some resultso 318
16.10.4Usage oo 319
16.10.5 Literatureo 320
16.11Server mode option -s. 320
16.12Pipe mode option -p 321
16.13Ngspice control via input, output fifos. 323
16.14Compatibilityo 324
16.14.1 Compatibility modeo 324
16.14.2 Missing functionso 325
16.14.3Deviceso 325
16.14.4 Controls and commands L. 326
16.14.5 PSPICE Compatibility mode 327
16.14.6 LTSPICE Compatibility mode 328
16.14.7 LTSPICE/PSPICE Compatibility mode 329
16.14.8 KiCad Compatibility mode 330
16.14.9 Spectre Compatibility mode 330
16.14.1HSPICE Compatibility mode 330
16.15Tests o o 330
16.16Tools for debugging a circuit netlist 331
16.16.1options and initial conditions 331
16.16.2set debugo 332
16.16.3set ngdebug 332
16.16.4miscellaneous oL 332
16.17Reporting bugs and errors 332
17 Interactive Interpreter 335
17.1 Introduction Lo 335
17.2 Expressions, Functions, and Constants 336
17.3 Plots o o 340
17.4 Command Interpretation 341
17.4.1 Ontheconsole 341
17.4.2 Scripts L 341

17.4.3 Add-on to circuit file 342

16

CONTENTS

17.5 Commands 342
17.5.1 Ac*: Perform an AC, small-signal frequency response analysis . . . 342
17.5.2 Alias: Create an alias for a command 343
17.5.3 Alter*: Change a device or model parameter 343
17.5.4 Altermod*: Change model parameter(s) 345
17.5.5 Alterparam™: Change value of a global parameter 346
17.5.6 Asciiplot: Plot values using old-style character plots 347
17.5.7 Aspice*®: Asynchronous ngspice run 347
17.5.8 Bug: Output URL for ngspice bug tracker 347
17.5.9 Cd: Change directory 347
17.5.10 Cdump: Dump the control flow to the screen. 348
17.5.11 Circbyline*: Enter a circuit line by line 348
17.5.12 Codemodel*: Load an XSPICE code model library 349
17.5.13 Compose: Compose a vector 350
17.5.14 Cutout: Cut out a section of all vectors in a tran plot 351
17.5.15Dc*: Perform a DC-sweep analysis 351
17.5.16 Define: Define a function 351
17.5.17 Deftype: Define a new type for a vector or plot 352
17.5.18 Delete*: Remove a trace or breakpoint 352
17.5.19 Destroy: Delete an output dataset 352
17.5.20 Devhelp: information on available devices 352
17.5.21 Diff: Compare vectors 353
17.5.22 Display: List known vectors and types 353
17.5.23 Echo: Print text oo 354
17.5.24 Edit*: Edit the current circuit 354
17.5.25 Edisplay: Print a list of all the event nodes 354
17.5.26 Eprint: Print an event driven node 354
17.5.27 Eprved: Dump event nodes in VCD format 355
17.5.28 FFT: fast Fourier transform of vectors 355
17.5.29 Fourier: Perform a Fourier transform 357
17.5.30 Getcwd: Print the current working directory 358
17.5.31 Gnuplot: Graphics output via gnuplot 358
17.5.32 Hardcopy: Save a plot to a file for printing 358
17.5.33 Help: Print summaries of Ngspice commands 358

17.5.34 History: Review previous commands 358

CONTENTS 17

17.5.35 Inventory: Print circuit inventory 361
17.5.36 Iplot™: Incremental plot 362
17.5.37 Jobs™*: List active asynchronous ngspice runs 362
17.5.38 Let: Assign a value to a vector 362
17.5.39 Linearize*: Interpolate to a linear scale 363
17.5.40 Listing™®: Print a listing of the current circuit 364
17.5.41 Load: Load rawfiledata 364
17.5.42Mc_source™: Reload the circuit netlist from an internal storage . . 364
17.5.43 Meas™: Measurements on simulation data 365
17.5.44 Mdump*: Dump the matrix values to a file (or to console) 365
17.5.45 Mrdump*: Dump the matrix right hand side values to a file (or to
console) . ..o 365
17.5.46 Noise™: Noise analysis 366
17.5.47Op*: Perform an operating point analysis 366
17.5.48 Option™: Set a ngspice option 367
17.5.49Plot: Plot vectors on the display 368
17.5.50 Pre_ <command>: execute commands prior to parsing the circuit . 369
17.5.51 Print: Print values 370
17.5.52 Psd: power spectral density of vectors 370
17.5.53 Quit: Leave Ngspice 371
17.5.54 Rehash: Reset internal hash tables 371
17.5.55 Remcirc*: Remove the current circuit 371
17.5.56 Remzerovec: Remove zero length vectors 371
17.5.57 Reset*: Reset an analysis 371
17.5.58 Reshape: Alter the dimensionality or dimensions of a vector 372
17.5.59 Resume™*: Continue a simulation after a stop 372
17.5.60 Rspice™: Remote ngspice submission 373
17.5.61 Run*: Run analysis from the input file 373
17.5.62 Rusage: Resource usage, 373
17.5.63 Save™: Save a set of outputs 374
17.5.64 Sens™®: Run a sensitivity analysis 376
17.5.65Set: Set the value of a variable 376
17.5.66 Setcs: Set the value of a variable, case preserved 377
17.5.67 Setcirc*: Change the current circuit 377

17.5.68 Setplot: Switch the current set of vectors 378

18

CONTENTS

17.5.69 Setscale: Set the scale vector for the current plot 378
17.5.70 Setseed: Set the seed value for the random number generator 378
17.5.71 Settype: Set the type of a vector 379
17.5.72 Shell: Call the command interpreter. 379
17.5.73 Shift: Alter a list variable 379
17.5.74 Show*: List device state 380
17.5.75 Showmod*: List model parameter values 380
17.5.76 Snload*: Load the snapshot file 380
17.5.77 Snsave™: Save a snapshot file 381
17.5.78 Source: Read a ngspice input file 382
17.5.79 Spec: Create a frequency domain plot 383
17.5.80 Status*: Display breakpoint information 383
17.5.81 Step*: Run a fixed number of time-points 383
17.5.82Stop™: Set a breakpoint L 384
17.5.83 Stremp: Compare two strings 384
17.5.84 Sysinfo*: Print system information 385
17.5.85 Tt*: Run a Transfer Function analysis 385
17.5.86 Trace*: Trace nodes 386
17.5.87 Tran*: Perform a transient analysis 386
17.5.88 Transpose: Swap the elements in a multi-dimensional data set . . . 387
17.5.89 Unalias: Retract analias 387
17.5.90 Undefine: Retract a definition 387
17.5.91 Unlet: Delete the specified vector(s) 387
17.5.92Unset: Clear a variable 388
17.5.93 Version: Print the version of ngspice 388
17.5.94 Where*: Identify troublesome node or device 389
17.5.95 Wrdata: Write data to a file (simple table) 390
17.5.96 Write: Write data to a file (Spice3f5 format) 390
17.5.97 Wrs2p: Write scattering parameters to file (Touchstone® format) . 391
17.6 Control Structures 391
17.6.1 While-End 391
17.6.2 Repeat - End 392
17.6.3 Dowhile - End oo 392
17.6.4 Foreach-Endo 392

17.6.5 If - Then - Else 393

CONTENTS 19

17.6.6 Label 393
17.6.7 Goto e 393
17.6.8 Continue L 394
17.6.9 Break 394

17.7 Internally predefined variables 394
17.8 Scripts L 401
17.8.1 Variables. 402
17.82 Vectors. o 402
17.8.3 Assessing vectors in subcircuitso 402
17.8.4 Commands 403
17.8.5 control structureso 403
17.8.6 Example script 'spectrum’ L. 407
17.8.7 Example script for random numberso 409
17.8.8 Parameter sweep 410
17.8.9 Output redirection Lo 410

17.9 Scattering parameters (S-parameters) 412
17.9.1 Intro o 412
17.9.2 S-parameter measurement basics 412
17.9.3 Usage o o o 414
17.10Using shell variables o oo 414
17.1IMISCELLANEOUS e 415
17.12Bugs o e 415
18 Ngspice User Interfaces 417
18.1 MS Windows Graphical User Interface 417
18.2 MS Windows Console o 420
183 Linux e 421
184 CygWin o 421
18.5 Error handlingo 421
18.6 Output-to-file options 422
18.6.1 Graphicsfiles 422
18.6.2 Tabulated files 427

18.7 Gnuplot 430
18.8 Integration with CAD software and ‘third party’ GUIs 431

18.8.1 KiCad 431

20 CONTENTS
18.8.2 Xschem 431
18.8.3 GNU Spice GUI 431
18.8.4 XCircuit 431
18.8.5 GEDA 432
18.8.6 MSEspice 432
18.8.7 GNU Octave 432

19 ngspice as shared library or dynamic link library 433

19.1 Compile options L 433
19.1.1 How to get the sources 433
19.1.2 Linux, MINGW, CYGWIN 433
19.1.3 MS Visual Studio 434

19.2 Linking shared ngspice to a calling application 434
19.2.1 Linking during creating the caller 434
19.2.2 Loading at runtimeo o 434

19.3 Shared ngspice AP 434
19.3.1 structs and types defined for transporting data 434
19.3.2 Exported functions o 437
19.3.3 Callback functions 439

19.4 General remarks on using the API 442
19.4.1 Loading a nmetlist o 442
19.4.2 Running the simulation 444
19.4.3 Accessing data 444
19.4.4 Altering model or device parameters 445
19.4.5 Output 446
19.4.6 Error handling oL 446

19.5 Example applications 0oL 446

19.6 ngspice parallelo 446
19.6.1 Go parallel! 447
19.6.2 Additional exported functions 448
19.6.3 Additional callback functions 449

19.6.4 Parallel ngspice example 450

CONTENTS

20 TCLspice

20.1
20.2
20.3
20.4
20.5

20.6

20.7

tclspice framework oL Lo
tclspice documentation Lo
spicetoblt
Running TCLspice
examples
20.5.1 Active capacitor measurement
20.5.2 Optimization of a linearization circuit for a Thermistor
20.5.3 Progressive display o
Compiling
20.6.1 Linux
20.6.2 MS Windows
MS Windows 32 Bit binaries 0L

21 Example Circuits

21.1
21.2
21.3
214
21.5
21.6
21.7

AC coupled transistor amplifier L.
Differential Pair
MOSFET Characterization
RTL Inverter o
Four-Bit Binary Adder (Bipolar)
Four-Bit Binary Adder (MOS) oL

Transmission-Line Inverter

22 Statistical circuit analysis

22.1
22.2
22.3
224
22.5

22.6

Introduction L
Using random param(eters)
Behavioral sources (B, E, G, R, L, C) with random control
ngspice scripting language Lo Lo
Monte-Carlo Simulation
22.5.1 Example 1o
22.5.2 Example 2o
2253 Example 3o

Data evaluation with Gnuplot

21

451
451
451
452
452
453
453
455
459
460
460
460
461

463
463
469
469
469
470
472
473

22

23 Circuit optimization with ngspice

23.1 Optimization of a circuit
23.2 ngspice optimizer using ngspice scripts
23.3 ngspice optimizer using tclspice
23.4 ngspice optimizer using a Python script
23.5 ngspice optimizer using ASCO

23.5.1 Three stage operational amplifier

23.5.2 Digital inverter
23.5.3 Bandpass L.
23.5.4 Class-E power amplifier

24 Notes

24.1 Glossary
24.2 Acronyms and Abbreviations
243 ToDo

IT XSPICE Software User’s Manual

25 XSPICE Basics

25.1 ngspice with the XSPICE option
25.2 The XSPICE Code Model Subsystem
25.3 XSPICE Top-Level Diagram

26 Execution Procedures

26.1 Simulation and Modeling Overview
26.1.1 Describing the Circuit
26.2 Circuit Description Syntax
26.2.1 XSPICE Syntax Extensions

26.3 How to create code models

27 Example circuits

27.1 Amplifier with XSPICE model ‘gain”
27.2 XSPICE advanced usage
27.2.1 Circuit example C3
27.2.2 Running example C3

CONTENTS

485

CONTENTS

28 Code Models and User-Defined Nodes
28.1 Code Model Data Type Definitions
28.2 Creating Code Models
28.3 Creating User-Defined Nodes

28.4 Adding a new code model library L.

28.5 Compiling and loading the new code model (library)

28.6 Interface Specification File L

28.6.1
28.6.2
28.6.3
28.6.4

The Name Table
The Port Table
The Parameter Table
Static Variable Table

28.7 Model Definition File

28.7.1
28.7.2

Macroso

Function Library o oo

28.8 User-Defined Node Definition File

28.8.1
28.8.2
28.8.3

Macroso

Function Library

Example UDN Definition File

29 Error Messages

29.1 Preprocessor Error Messageso oL

29.2 Simulator Error Messages

29.3 Code Model Error Messages

29.3.1
29.3.2
29.3.3
29.3.4
29.3.5
29.3.6
29.3.7
29.3.8
29.3.9

Code Model aswitch
Code Model climit
Code Model core
Code Model d_osc
Code Model d_source
Code Model d_state
Code Model oneshot L
Code Model pwl.o
Code Model s xfer

29.3.10Code Model sineo
29.3.11Code Model square
29.3.12Code Model triangleo

23

525
526
227
927
028
929
529
931
931
933
935
536
236
245
952
953
5954
956

24 CONTENTS

IITI CIDER 573
30 CIDER User’s Manual 575
30.1 SPECIFICATION e 575
30.1.1 Examples 576
30.2 BOUNDARY, INTERFACE Y
30.2.1 DESCRIPTION 577
30.2.2 PARAMETERS 578
30.2.3 EXAMPLES 578
30.3 COMMENT 578
30.3.1 DESCRIPTION 579
30.3.2 EXAMPLES 579
30.4 CONTACT s s e 579
30.4.1 DESCRIPTION 579
30.4.2 PARAMETERS 579
30.4.3 EXAMPLES 579
30.4.4 SEE ALSO 580
30.5 DOMAIN, REGION 580
30.5.1 DESCRIPTION 580
30.5.2 PARAMETERS 580
30.5.3 EXAMPLES 580
30.5.4 SEE ALSO 581
30.6 DOPING o 581
30.6.1 DESCRIPTION 581
30.6.2 PARAMETERS o84
30.6.3 EXAMPLES 584
30.6.4 SEE ALSO 585
30.7 ELECTRODEo 585
30.7.1 DESCRIPTION 585
30.7.2 PARAMETERS 586
30.7.3 EXAMPLES 586
30.7.4 SEE ALSO 587
30.8 END . . o oo 587
30.8.1 DESCRIPTION 587

30.9 MATERIAL oo o987

CONTENTS 25

30.9.1 DESCRIPTION 587
30.9.2 PARAMETERS 588
30.9.3 EXAMPLES 588
30.9.4 SEE ALSO 588
30.10METHOD 589
30.10.1 DESCRIPTION o 589
30.10.2 Parameterso 589
30.10.3Examples 590
30.11Mobility 590
30.11.1 Descriptiono 590
30.11.2Parameters 991
30.11.3Examples 591
30.11.4SEE ALSO 592
30.1L.5BUGS 992
30.12MODELS o 592
30.12.1DESCRIPTION o 592
30.12.2 Parameters 592
30.12.3Examples 593
30.12.4See also 593
30.125Bugs 293
30.130PTIONS o 593
30.13.1DESCRIPTION o 593
30.13.2Parameters L 5994
30.13.3Exampleso 594
30.13.4See also 595
30.140UTPUT e 295
30.14.1DESCRIPTION o 595
30.14.2 Parameters Lo 596
30.14.3Exampleso 596
30.14.4SEE ALSO 597
30.15TITLE « . . . o o 597
30.15.1DESCRIPTION 597
30.15.2EXAMPLES 597
30.15.3BUGS 597

30.16X.MESH, Y. MESH 297

26 CONTENTS

30.16.1 DESCRIPTION 598
30.16.2 Parameterso 599
30.16.3EXAMPLES 599
30.16.4SEE ALSO e 599
30.17TNUMD . . . o 600
30.17.1DESCRIPTION 600
30.17.2Parameterso Lo 601
30.17.3EXAMPLES 601
30.17.4SEE ALSO 602
30175 BUGS . . . o 602
30.18NBJT . o o 602
30.18. 1 DESCRIPTION 602
30.18.2 Parameterso 603
30.18.3EXAMPLES 603
30.18.4SEE ALSO 604
30.185BUGS o 604
30.19NUMOS e 604
30.19.1DESCRIPTION o 605
30.19.2 Parameters 605
30.19.3EXAMPLES 606
30.19.4SEE ALSO 606
30.20Cider examples 606
IV Miscellaneous 607
31 Model and Device Parameters 609
31.1 Accessing internal device parameters 609
31.2 Elementary Devices 611
31.2.1 Resistor 611
31.2.2 Capacitor - Fixed capacitor 613
31.2.3 Inductor - Fixed inductor 614
31.2.4 Mutual - Mutual Inductor L. 615

31.3 Voltage and current sources 616
31.3.1 Bxxxx - Arbitrary source (ASRC) 616

31.3.2 Isource - Independent current source 617

CONTENTS

31.3.3 Vsource - Independent voltage source

31.3.4 Fxxxx: Current-Controlled Current Source (CCCS)
31.3.5 Hxxxx: Current-Controlled Voltage Source (CCVS)
31.3.6 Gxxxx: Voltage-Controlled Current Source (VCCS)
31.3.7 Exxxx: Voltage-Controlled Voltage Source (VCVS)

31.4 Transmission Lines

31.4.1
31.4.2
31.4.3
31.4.4
31.4.5
31.5 BJTs
31.5.1
31.5.2

CplLines - Simple Coupled Multiconductor Lines
LTRA - Lossy transmission line
Tranline - Lossless transmission line

TransLine - Simple Lossy Transmission Line
URC - Uniform R. C. line
BJT - Bipolar Junction Transistor.
VBIC - Vertical Bipolar Inter-Company Model

31.6 MOSFETs

31.6.1
31.6.2
31.6.3
31.6.4
31.6.5
31.6.6
31.6.7
31.6.8
31.6.9

MOST1 - Level 1 MOSFET model with Meyer capacitance model .
MOS2 - Level 2 MOSFET model with Meyer capacitance model .
MOSS3 - Level 3 MOSFET model with Meyer capacitance model .
MOS6 - Level 6 MOSFET model with Meyer capacitance model .
MOS9 - Modified Level 3 MOSFET model

32 Compilation notes

32.1 Ngspice Installation under Linux (and other 'UNIXes’)

32.1.1
32.1.2
32.1.3
32.14
32.1.5
32.1.6
32.1.7
32.1.8

Prerequisites
Install from Gito
Install from a tarball, e.g. from ngspice-33.tar.gz
Compilation using an user defined directory tree for object files

ngspice as a shared libraryo
Relative paths for spinit and code models.
Advanced Install oo

Compilers and Options

27

618
619
619
620
620
621
621
622
623
624
625
626
626
629
633

. 633
. 636
. 640
. 644

647
651
654
658
659

28 CONTENTS
32.1.9 Compiling For Multiple Architectures 668
32.1.10Installation Names L 668
32.1.11 Optional Features 668
32.1.12 Specifying the System Type 668
32.1.13Sharing Defaults oo 669
32.1.14 Operation Controls 669

32.2 Ngspice Compilation under Windows OS 669
32.2.1 Building ngspice with MS Visual Studio 2019 669
32.2.2 How to make ngspice with MINGW and MSYS2 672
32.2.3 make ngspice with pure CYGWIN 675
32.2.4 ngspice mingw or cygwin console executable w/o graphics 676
32.2.5 ngspice for MS Windows, cross compiled from Linux 676

32.3 Reporting errors 677

33 Copyrights and licenses 679

33.1 Documentation license Lo 679

33.2 ngspice licenseo 679

33.3 Some license detailso o 679
33.3.1 CC-BY-SA 679
33.3.2 ‘Modified” BSD license 680

33.4 On the historical evolvement of the ngspice licenses 681
33.4.1 XSPICE SOFTWARE (documentation) copyright 681
33.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by

33.4.3) L 681
33.4.3 ‘Modified” BSD license L. 682
33.4.4 XSPICE 683
33.4.5 tclspice, numparam 683

33.4.6 Linking to GPLd libraries (e.g. readline, fftw, table.cm): 683

Prefaces

Preface to the first edition

This manual has been assembled from different sources:

1. The spice3f5 manual,
2. the XSPICE user’s manual,

3. the CIDER user’s manual

and some original material needed to describe the new features and the newly implemented
models. This cut and paste approach, while not being orthodox, allowed ngspice to have
a full manual in a fraction of the time that writing a completely new text would have
required. The use of LaTex and Iy X instead of TeXinfo, which was the original encoding
for the manual, further helped to reduce the writing effort and improved the quality of
the result, at the expense of an on-line version of the manual but, due to the complexity
of the software I hardly think that users will ever want to read an on-line text version.

In writing this text I followed the spice3f5 manual, both in the chapter sequence and
presentation of material, mostly because that was already the user manual of SPICE.

Ngspice is an open source software, users can download the source code, compile, and
run it. This manual has an entire chapter describing program compilation and available
options to help users in building ngspice (see Chapt. 32). The source package already
comes with all ‘safe’ options enabled by default, and activating the others can produce
unpredictable results and thus is recommended to expert users only. This is the first
ngspice manual and I have removed all the historical material that described the differences
between ngspice and spice3, since it was of no use for the user and not so useful for the
developer who can look for it in the Changelogs of in the revision control system.

I want to acknowledge the work done by Emmanuel Rouat and Arno W. Peters for
converting the original spice3f documentation to TEXinfo. Their effort gave ngspice users
the only available documentation that described the changes for many years. A good
source of ideas for this manual came from the on-line spice3f manual written by Charles
D.H. Williams (Spice3f5 User Guide), constantly updated and useful for its many insights.

As always, errors, omissions and unreadable phrases are only my fault.

Paolo Nenzi

Roma, March 24th 2001

29

http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc

30 CONTENTS

Indeed. At the end of the day, this is engineering, and one learns to live
within the limitations of the tools.

Kevin Aylward, Warden of the King’s Ale

Preface to the actual edition (as May 2018)

Due to the wealth of new material and options in ngspice the actual order of chapters has
been revised. Several new chapters have been added. The [yX text processor has allowed
adding internal cross references. The PDF format has become the standard format for
distribution of the manual. Within each new ngspice distribution (starting with ngspice-
21) a manual edition is provided reflecting the ngspice status at the time of distribution.
At the same time, located at ngspice manuals, the manual is constantly updated. Every
new ngspice feature should enter this manual as soon as it has been made available in the
Git source code master branch.

Holger Vogt
Miilheim, 2018

http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-manuals/

Acknowledgments

ngspice contributors

Spice3 and CIDER were originally written at The University of California at Berkeley
(USA).

XSPICE has been provided by Georgia Institute of Technology, Atlanta (USA).

Since then, there have been many people working on the software, most of them releasing
patches to the original code through the Internet.

The following people have contributed in some way:

Vera Albrecht,
Cecil Aswell,

Giles C. Billingsley,
Phil Barker,

Steven Borley,
Stuart Brorson,
Mansun Chan,
Wayne A. Christopher,
Al Davis,

Glao S. Dezai,

Jon Engelbert,
Daniele Foci,

Noah Friedman,
David A. Gates,
Alan Gillespie,
John Heidemann,
Marcel Hendrix,
Jeffrey M. Hsu,
JianHui Huang,

S. Hwang,

Chris Inbody,
Gordon M. Jacobs,
Min-Chie Jeng,
Beorn Johnson,
Stefan Jones,
Kenneth H. Keller,
Francesco Lannutti,

31

32 CONTENTS

Robert Larice,
Mathew Lew,

Robert Lindsell,
Weidong Liu,
Kartikeya Mayaram,
Richard D. McRoberts,
Manfred Metzger,

Jim Monte,

Wolfgang Muees,
Paolo Nenzi,

Gary W. Ng,

Hong June Park,
Stefano Perticaroli,
Arno Peters,
Serban-Mihai Popescu,
Georg Post,

Thomas L. Quarles,
Emmanuel Rouat,
Jean-Marc Routure,
Jaijeet S. Roychowdhury,
Lionel Sainte Cluque,
Takayasu Sakurai,
Amakawa Shuhei,
Kanwar Jit Singh,

Bill Swartz,

Hitoshi Tanaka,

Steve Tell,

Andrew Tuckey,
Andreas Unger,

Holger Vogt,

Dietmar Warning,
Michael Widlok,
Charles D.H. Williams,
Antony Wilson,

and many others...

If someone helped in the development and has not been inserted in this list then this
omission was unintentional. If you feel you should be on this list then please write to
<ngspice-devel@lists.sourceforge.net>. Do not be shy, we would like to make a list as
complete as possible.

mailto:ngspice-devel@lists.sourceforge.net

Chapter 1

Introduction

Ngspice is a general-purpose circuit simulation program for nonlinear and linear analyses.
Circuits may contain resistors, capacitors, inductors, mutual inductors, independent or
dependent voltage and current sources, loss-less and lossy transmission lines, switches,
uniform distributed RC lines, and the five most common semiconductor devices: diodes,
BJTs, JFETs, MESFETs, and MOSFETs.

Some introductory remarks on how to use ngspice may be found in Chapt. 21.

Ngspice is an update of Spice3f5, the last Berkeley’s release of Spice3 simulator family.
Ngspice is being developed to include new features to existing Spice3f5 and to fix its bugs.
Improving a complex software like a circuit simulator is a very hard task and, while some
improvements have been made, most of the work has been done on bug fixing and code
refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only
the pertinent model parameter values.

Ngspice supports mixed-level simulation and provides a direct link between technology pa-
rameters and circuit performance. A mixed-level circuit and device simulator can provide
greater simulation accuracy than a stand-alone circuit or device simulator by numerically
modeling the critical devices in a circuit. Compact models can be used for all other de-
vices. The mixed-level extensions to ngspice is CIDER, a mixed-level circuit and device
simulator integrated into ngspice code.

Ngspice supports mixed-signal simulation through the integration of XSPICE code. XSPICE
software, developed as an extension to Spice3C1 by GeorgiaTech, has been enhanced and
ported to ngspice to provide ‘board’ level and mixed-signal simulation.

The XSPICE extension enables pure digital simulation as well.

New devices can be added to ngspice by several means: behavioral B-, E- or G-sources,
the XSPICE code-model interface for C-like device coding, and the ADMS interface based
on Verilog-A and XML.

Finally, numerous small bugs have been discovered and fixed, and the program has been
ported to a wider variety of computing platforms.

33

34 CHAPTER 1. INTRODUCTION

1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers,
and others who want to analyze the operation of a design without examining the physical
circuit. Simulation allows you to change quickly the parameters of many of the circuit ele-
ments to determine how they affect the circuit response. Often it is difficult or impossible
to change these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time.
The key to efficient execution is choosing the proper level of modeling abstraction for
a given problem. To support a given modeling abstraction, the simulator must provide
appropriate algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a
digital simulation algorithm. Ngspice inherits the XSPICE framework and supports both
analog and digital algorithms and is a ‘mixed-mode’ simulator.

1.1.1 Analog Simulation

Analog simulation focuses on the linear and non-linear behavior of a circuit over a con-
tinuous time or frequency interval. The circuit response is obtained by iteratively solving
Kirchhoff’s Laws for the circuit at time steps selected to ensure the solution has converged
to a stable value and that numerical approximations of integrations are sufficiently accu-
rate. Since Kirchhoff’s laws form a set of simultaneous equations, the simulator operates
by solving a matrix of equations at each time point. This matrix processing generally
results in slower simulation times when compared to digital circuit simulators.

The response of a circuit is a function of the applied sources. Ngspice offers a variety
of source types including DC, sine-wave, and pulse. In addition to specifying sources,
the user must define the type of simulation to be run. This is termed the ‘mode of
analysis’. Analysis modes include DC analysis, AC analysis, and transient analysis. For
DC analysis, the time-varying behavior of reactive elements is neglected and the simulator
calculates the DC solution of the circuit. Swept DC analysis may also be accomplished
with ngspice. This is simply the repeated application of DC analysis over a range of
DC levels for the input sources. For AC analysis, the simulator determines the response
of the circuit, including reactive elements to small-signal sinusoidal inputs over a range
of frequencies. The simulator output in this case includes amplitudes and phases as
a function of frequency. For transient analysis, the circuit response, including reactive
elements, is analyzed to calculate the behavior of the circuit as a function of time.

1.1.2 Device Models for Analog Simulation

There are three models for bipolar junction transistors, all based on the integral-charge
model of Gummel and Poon; however, if the Gummel-Poon parameters are not specified,
the basic model (BJT) reduces to the simpler Ebers-Moll model. In either case and in
either models, charge storage effects, ohmic resistances, and a current-dependent output
conductance may be included. The second bipolar model BJT2 adds dc current compu-
tation in the substrate diode. The third model (VBIC) contains further enhancements
for advanced bipolar devices.

1.1. SIMULATION ALGORITHMS 35

The semiconductor diode model can be used for either junction diodes or Schottky barrier
diodes. There are two models for JFET: the first (JFET) is based on the model of
Shichman and Hodges, the second (JFET2) is based on the Parker-Skellern model. All
the original six MOSFET models are implemented: MOS1 is described by a square-law
I-V characteristic, MOS2 [1] is an analytical model, while MOS3 [1] is a semi-empirical
model; MOS6 [2] is a simple analytic model accurate in the short channel region; MOS9,
is a slightly modified Level 3 MOSFET model - not to confuse with Philips level 9; BSIM
1 [3, 4]; BSIM2 [5] are the old BSIM (Berkeley Short-channel IGFET Model) models.
MOS2, MOS3, and BSIM include second-order effects such as channel-length modulation,
subthreshold conduction, scattering-limited velocity saturation, small-size effects, and
charge controlled capacitances. The recent MOS models for submicron devices are the
BSIM3 (Berkeley BSIM3 web page) and BSIM4 (Berkeley BSIM4 web page) models.
Silicon-on-insulator MOS transistors are described by the SOI models from the BSIMSOI
family (Berkeley BSIMSOI web page) and the STAG [18] one. There is partial support
for a couple of HFET models and one model for MESA devices.

1.1.3 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A
primary difference is that a solution of Kirchhoft’s laws is not required. Instead, the
simulator must only determine whether a change in the logic state of a node has occurred
and propagate this change to connected elements. Such a change is called an ‘event’.

When an event occurs, the simulator examines only those circuit elements that are affected
by the event. As a result, matrix analysis is not required in digital simulators. By
comparison, analog simulators must iteratively solve for the behavior of the entire circuit
because of the forward and reverse transmission properties of analog components. This
difference results in a considerable computational advantage for digital circuit simulators,
which is reflected in the significantly greater speed of digital simulations.

1.1.4 Mixed-Signal Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately a mix of analog and digital simulation techniques is required.
When analog simulation algorithms are combined with digital simulation algorithms, the
result is termed ‘mixed-mode simulation’

Two basic methods of implementing mixed-mode simulation used in practice are the ‘na-
tive mode’ and ‘glued mode’ approaches. Native mode simulators implement both an
analog algorithm and a digital algorithm in the same executable. Glued mode simulators
actually use two simulators, one of which is analog and the other digital. This type of
simulator must define an input/output protocol so that the two executables can com-
municate with each other effectively. The communication constraints tend to reduce the
speed, and sometimes the accuracy, of the complete simulator. On the other hand, the
use of a glued mode simulator allows the component models developed for the separate
executables to be used without modification.

Ngspice is a native mode simulator providing both analog and event-based simulation
in the same executable. The underlying algorithms of ngspice (coming from XSPICE

http://www-device.eecs.berkeley.edu/bsim/?page=BSIM3
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4
http://www-device.eecs.berkeley.edu/bsim/?page=BSIMSOI

36 CHAPTER 1. INTRODUCTION

and its Code Model Subsystem) allow use of all the standard SPICE models, provide a
pre-defined collection of the most common analog and digital functions, and provide an
extensible base on which to build additional models.

1.1.4.1 User-Defined Nodes

Ngspice supports creation of ‘User-Defined Node’ types. User-Defined Node types allow
you to specify nodes that propagate data other than voltages, currents, and digital states.
Like digital nodes, User-Defined Nodes use event-driven simulation, but the state value
may be an arbitrary data type. A simple example application of User-Defined Nodes is
the simulation of a digital signal processing filter algorithm. In this application, each
node could assume a real or integer value. More complex applications may define types
that involve complex data such as digital data vectors or even non-electronic data.

Ngspice digital simulation is actually implemented as a special case of this User-Defined
Node capability where the digital state is defined by a data structure that holds a Boolean
logic state and a strength value.

1.1.5 Mixed-Level Simulation

Ngspice can simulate numerical device models for diodes and transistors in two different
ways, either through the integrated DSIM simulator or interfacing to GSS TCAD system.
DSIM is an internal C-based device simulator that is part of the CIDER simulator, the
mixed-level simulator based on SPICE3f5. CIDER within ngspice provides circuit anal-
yses, compact models for semiconductor devices, and one- or two-dimensional numerical
device models.

1.1.5.1 CIDER (DSIM)

CIDER integrates the DSIM simulator with Spice3. It provides accurate, one- and two-
dimensional numerical device models based on the solution of Poisson’s equation, and
the electron and hole current-continuity equations. DSIM incorporates many of the same
basic physical models found in the Stanford two-dimensional device simulator PISCES.
Input to CIDER consists of a SPICE-like description of the circuit and its compact mod-
els, and PISCES-like descriptions of the structures of numerically modeled devices. As a
result, CIDER should seem familiar to designers already accustomed to these two tools.
The CIDER input format has great flexibility and allows access to physical model pa-
rameters. New physical models have been added to allow simulation of state-of-the-art
devices. These include transverse field mobility degradation important in scaled-down
MOSFETs and a polysilicon model for poly-emitter bipolar transistors. Temperature de-
pendence has been included over the range from -50C to 150C. The numerical models
can be used to simulate all the basic types of semiconductor devices: resistors, MOS
capacitors, diodes, BJTs, JFETs and MOSFETs. BJTs and JFETs can be modeled with
or without a substrate contact. Support has been added for the management of device
internal states.

1.2. SUPPORTED ANALYSES 37

1.1.5.2 GSS TCAD

GSS is a TCAD software that enables two-dimensional numerical simulation of semicon-
ductor device with well-known drift-diffusion and hydrodynamic method. GSS has Basic
DDM (drift-diffusion method) solver, Lattice Temperature Corrected DDM solver, EBM
(energy balance method) solver and Quantum corrected DDM solver based on density-
gradient theory. The GSS program is directed via input statements by a user specified
disk file. Supports triangle mesh generation and adaptive mesh refinement. Employs PMI
(physical model interface) to support various materials, including compound semiconduc-
tor materials such as SiGe and AlGaAs. Supports DC sweep, transient and AC sweep
calculations. The device can be stimulated by voltage or current source(s).

GSS is no longer updated, but is still available as open source as a limited edition of the
commercial GENIUS TCAD tool. This interface has not been tested with actual ngspice
versions and may need some maintenance efforts.

1.2 Supported Analyses
The ngspice simulator supports the following different types of analysis:

1. DC Analysis (Operating Point and DC Sweep)
2. AC Small-Signal Analysis

3. Transient Analysis

4. Pole-Zero Analysis

5. Small-Signal Distortion Analysis

6. Sensitivity Analysis

7. Noise Analysis

Applications that are exclusively analog can make use of all analysis modes with the
exception of Code Model subsystem that do not implements Pole-Zero, Distortion, Sensi-
tivity and Noise analyses. Event-driven applications that include digital and User-Defined
Node types may make use of DC (operating point and DC sweep) and Transient only.

In order to understand the relationship between the different analyses and the two un-
derlying simulation algorithms of ngspice, it is important to understand what is meant
by each analysis type. This is detailed below.

1.2.1 DC Analysis

The DC analysis portion of ngspice determines the dc operating point of the circuit with
inductors shorted and capacitors opened. DC analysis options are specified on the .DC,
.TF, and .0P control lines.

38 CHAPTER 1. INTRODUCTION

DC analysis does not consider any time dependence on any of the sources within the sys-
tem description. The simulator algorithm subdivides the circuit into those portions that
require the analog simulator algorithm and those that require the event-driven algorithm.
Each subsystem block is then iterated to solution, with the interfaces between analog
nodes and event-driven nodes iterated for consistency across the entire system.

Once stable values are obtained for all nodes in the system, the analysis halts and the
results may be displayed or printed out as you request them.

A dc analysis is automatically performed prior to a transient analysis to determine the
transient initial conditions, and prior to an ac small-signal analysis to determine the
linearized, small-signal models for nonlinear devices. If requested, the DC small-signal
value of a transfer function (ratio of output variable to input source), input resistance,
and output resistance is also computed as a part of the DC solution. DC analysis can also
be used to generate DC transfer curves: a specified independent voltage, current source,
resistor or temperature is stepped over a user-specified range and the DC output variables
are stored for each sequential source value.

1.2.2 AC Small-Signal Analysis

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution
of the analog system described at a particular frequency or set of frequencies. This
analysis is similar to the DC analysis in that it represents the steady-state behavior of
the described system with a single input node at a given set of stimulus frequencies.

The program first computes the dc operating point of the circuit and determines linearized,
small-signal models for all of the nonlinear devices in the circuit. The resultant linear
circuit is then analyzed over a user-specified range of frequencies. The desired output of
an ac small-signal analysis is usually a transfer function (voltage gain, transimpedance,
etc). If the circuit has only one ac input, it is convenient to set that input to unity and
zero phase, so that output variables have the same value as the transfer function of the
output variable with respect to the input.

1.2.3 Transient Analysis

Transient analysis is an extension of DC analysis to the time domain. A transient analysis
first obtains a DC solution to provide a point of departure for simulating time-varying
behavior. Once the DC solution is obtained, the time-dependent aspects of the system are
reintroduced, and the two simulator algorithms incrementally solve for the time varying
behavior of the entire system. Inconsistencies in node values are resolved by the two
simulation algorithms such that the time-dependent waveforms created by the analysis are
consistent across the entire simulated time interval. Resulting time-varying descriptions
of node behavior for the specified time interval are accessible to you.

All sources that are not time dependent (for example, power supplies) are set to their dc
value. The transient time interval is specified on a .TRAN control line.

1.2. SUPPORTED ANALYSES 39

1.2.4 Pole-Zero Analysis

Pole-zero analysis in ngspice computes the poles and/or zeros in the small-signal ac trans-
fer function. Ngspice first computes the dc operating point and then determines the lin-
earized, small-signal models for all the nonlinear devices in the circuit. The small-signal
circuit model is then used to find the poles and zeros of the transfer function. Two types
of transfer functions are allowed: one of the form (output voltage)/(input voltage) and
the other of the form (output voltage)/(input current). These two types of transfer func-
tions cover all the cases and one can find the poles/zeros of functions like input/output
impedance and voltage gain. The input and output ports are specified as two pairs of
nodes. The pole-zero analysis works with resistors, capacitors, inductors, linear-controlled
sources, independent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines
are not supported.

The method used in the analysis is a sub-optimal numerical search. For large circuits it
may take a considerable time or fail to find all poles and zeros. Please note, that for some
circuits, the method becomes “lost” and may find an excessive number of poles or zeros.

1.2.5 Small-Signal Distortion Analysis

Distortion analysis in ngspice computes steady-state harmonic and intermodulation prod-
ucts for small input signal magnitudes. If signals of a single frequency are specified as
the input to the circuit, the complex values of the second and third harmonics are deter-
mined at every point in the circuit. If there are signals of two frequencies input to the
circuit, the analysis finds out the complex values of the circuit variables at the sum and
difference of the input frequencies, and at the difference of the smaller frequency from the
second harmonic of the larger frequency. Distortion analysis is supported for the following
nonlinear devices:

« Diodes (DIO),
. BJT,
o JFET (level 1),

MOSFETs (levels 1, 2, 3, 9, and BSIM1),
« MESFET (level 1).

All linear devices are automatically supported by distortion analysis. If there are switches
present in the circuit, the analysis continues to be accurate provided the switches do not
change state under the small excitations used for distortion calculations.

If a device model does not support direct small signal distortion analysis, please use the
Fourier of FFT statements and evaluate the output per scripting.

1.2.6 Sensitivity Analysis

Ngspice can calculate either the DC operating-point sensitivity or the AC small-signal
sensitivity of an output variable with respect to all circuit variables, including model

40 CHAPTER 1. INTRODUCTION

parameters. Ngspice calculates the difference in an output variable (either a node voltage
or a branch current) by perturbing each parameter of each device independently. Since the
method is a numerical approximation, the results may demonstrate second order effects
in highly sensitive parameters, or may fail to show very low but non-zero sensitivity.

Since each variable is perturbed by a small fraction of its value, zero-valued parameters
are not analyzed, reducing what is usually a very large amount of data.

1.2.7 Noise Analysis

Noise analysis in ngspice measures the device-generated noise for a given circuit. When
provided with an input source and an output port, the analysis calculates the noise con-
tributions of each device, and each noise generator within each device, as measured as a
voltage at the output port. Noise analysis also calculates the equivalent input noise of
the circuit, based on the output noise. This is done for every frequency point in a spec-
ified range - the calculated value of the noise corresponds to the spectral density of the
circuit variable viewed as a stationary Gaussian stochastic process. After calculating the
spectral densities, noise analysis integrates these values over the specified frequency range
to arrive at the total noise voltage and current over this frequency range. The calculated
values correspond to the variance of the circuit variables viewed as stationary Gaussian
processes.

1.2.8 Periodic Steady State Analysis

Ezxperimental code.

PSS is a radio frequency periodical large-signal dedicated analysis. The implementation
is based on a time domain shooting method that make use of transient analysis. As
it is in early development stage, PSS performs analysis only on autonomous circuits,
meaning that it is able to predict fundamental frequency and (harmonic) amplitude(s)
for oscillators, VCOs, etc.. The algorithm is based on a search of the minimum error
vector defined as the difference of RHS vectors between two occurrences of an estimated
period. Convergence is reached when the mean of this error vector decreases below a given
threshold parameter. Results of PSS are the basis of periodical large-signal analyses like
PAC or PNoise.

1.3 Analysis at Different Temperatures

Temperature, in ngspice, is a property associated to the entire circuit, rather than an
analysis option. Circuit temperature has a default (nominal) value of 27°C (300.15 K)
that can be changed using the TEMP option in an .option control line (see 15.1.1) or by
the .TEMP line (see 2.12), which has precedence over the .option TEMP line. All analyses
are, thus, performed at circuit temperature, and if you want to simulate circuit behavior
at different temperatures you should prepare a netlist for each temperature.

All input data for ngspice is assumed to have been measured at the circuit nominal
temperature. This value can further be overridden for any device that models temperature

1.3. ANALYSIS AT DIFFERENT TEMPERATURES 41

effects by specifying the TNOM parameter on the .model itself. Individual instances may
further override the circuit temperature through the specification of TEMP and DTEMP
parameters on the instance. The two options are not independent even if you can specify
both on the instance line, the TEMP option overrides DTEMP. The algorithm to compute
instance temperature is described below:

Algorithm 1.1 Instance temperature computation

IF TEMP is specified THEN
instance temperature = TEMP
ELSE IF

instance temperature = circuit_ temperature + DTEMP
END IF

Temperature dependent support is provided for all devices except voltage and current
sources (either independent and controlled) and BSIM models. BSIM MOSFETs have an
alternate temperature dependency scheme that adjusts all of the model parameters before
input to ngspice.

For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears
explicitly in the exponential terms of the BJT and diode model equations. In addition,
saturation currents have a built-in temperature dependence. The temperature dependence
of the saturation current in the BJT models is determined by:

s (Ty) = I (Ty) (%)X e (00 (1)

where k is Boltzmann’s constant, ¢ is the electronic charge, F, is the energy gap model
parameter, and XTI is the saturation current temperature exponent (also a model pa-
rameter, and usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

T1>XTB (1.2)

B(Ty)=B(Ty) | =
(1) =5 (1) (7
where Ty and T are in degrees Kelvin, and XT'B is a user-supplied model parameter.
Temperature effects on beta are carried out by appropriate adjustment to the values of
Br, Isg, Bgr, and Igc (SPICE model parameters BF, ISE, BR, and ISC, respectively).

Temperature dependence of the saturation current in the junction diode model is deter-
mined by:

XTI

() =15t (1) e () (13)

where N is the emission coefficient model parameter, and the other symbols have the
same meaning as above. Note that for Schottky barrier diodes, the value of the saturation
current temperature exponent, X711, is usually 2. Temperature appears explicitly in the
value of junction potential, U (in Ngspice PHI), for all the device models.

42 CHAPTER 1. INTRODUCTION

The temperature dependence is determined by:

KT [NNy
U(T) =" (Ni (T)Q) (1.4)

where £ is Boltzmann’s constant, ¢ is the electronic charge, N, is the acceptor impurity
density, Ny is the donor impurity density, /V; is the intrinsic carrier concentration, and £,
is the energy gap. Temperature appears explicitly in the value of surface mobility, My(or
Up), for the MOSFET model.

The temperature dependence is determined by:
M, (To)
- 15
(%)
To

The effects of temperature on resistors, capacitor and inductors is modeled by the formula:

My (T) (1.5)

R(T) = R(Ty) [1 +TC, (T — Ty) + TC (T — Tp))? (1.6)

where T is the circuit temperature, Ty is the nominal temperature, and T'C; and T'C5 are
the first and second order temperature coefficients.

1.4 Convergence

Ngspice uses the Newton-Raphson algorithm to solve nonlinear equations arising from
circuit description. The NR algorithm is interactive and terminates when both of the
following conditions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp
(1.0e-12 Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6
Volt), whichever is larger.

1.4.1 Voltage convergence criterion

The algorithm has reached convergence when the difference between the last iteration k
and the current one (k + 1)

v —)| < RELTOL v,,,,, + VNTOL, (1.7)

n

where

(k+1)

vP|). (1.8)

Unppae = INAX (‘v

1.4. CONVERGENCE 43

The RELTOL (RELative TOLerance) parameter, which default value is 1073, specifies
how small the solution update must be, relative to the node voltage, to consider the
solution to have converged. The VNTOL (absolute convergence) parameter, which has 1uV
as default value, becomes important when node voltages have near zero values. The
relative parameter alone, in such case, would need too strict tolerances, perhaps lower
than computer round-off error, and thus convergence would never be achieved. VNTOL
forces the algorithm to consider as converged any node whose solution update is lower
than its value.

1.4.2 Current convergence criterion

Ngspice checks the convergence on the non-linear functions that describe the non-linear
branches in circuit elements. In semiconductor devices the functions defines currents
through the device and thus the name of the criterion.

Ngspice computes the difference between the value of the nonlinear function computed
for the last voltage and the linear approximation of the same current computed with the
actual voltage

it) | < RELTOL 4y, + ABSTOL, (1.9)
where
i =m0 (150) (1.10)

In the two expressions above, the m indicates the linear approximation of the current.

1.4.3 Convergence failure

Although the algorithm used in ngspice has been found to be very reliable, in some cases
it fails to converge to a solution. When this failure occurs, the program terminates the
job. Failure to converge in dc analysis is usually due to an error in specifying circuit
connections, element values, or model parameter values. Regenerative switching circuits
or circuits with positive feedback probably will not converge in the dc analysis unless the
OFF option is used for some of the devices in the feedback path, .nodeset control line is
used to force the circuit to converge to the desired state.

44

CHAPTER 1. INTRODUCTION

Chapter 2

Circuit Description

2.1 General Structure and Conventions

2.1.1 Input file structure

The circuit to be analyzed is described to ngspice by a set of element instance lines, which
define the circuit topology and element instance values, and a set of control lines, which
define the model parameters and the run controls. All lines are assembled in an input file
to be read by ngspice. Two lines are essential:

e The first line in the input file must be the title, which is the only comment line that
does not need any special character in the first place.

o The last line must be .end, plus a newline delimiter.

The order of the remaining lines is alomost arbitrary (except, of course, that continuation
lines must immediately follow the line being continued, .subcktends, .ifendif,
or .controlendc have to enclose their specific lines). Leading white spaces in a
line are ignored, as well as empty lines.

The lines described in sections 2.1 to 2.12 are typically used in the core of the input file,
outside of a .control section (see 16.4.3). An exception is the .include includefile
line (2.7) that may be placed anywhere in the input file. The contents of includefile
will be inserted exactly in place of the .include line.

2.1.2 Syntax check

A very preliminary syntax check has been added to the input parser.

2.1.2.1 Valid utf-8 characters

The input file will be scanned for valid utf-8 characters. If non-valid characters are found,
reading the input is stopped.

45

46 CHAPTER 2. CIRCUIT DESCRIPTION

2.1.2.2 Special characters leading a line

If the first character in a netlist or .control line is one of =[]?()&%$§\"!:, then ngspice
replaces it by '*’ and issues a warning. Command set strict_errorhandling will force
ngspice to exit.

2.1.2.3 Dot command couple completion

Check for .controlendc, .subcktends, .ifendif.

2.1.3 Circuit elements (device instances)

Each element in the circuit is a device instance specified by an instance line that con-
tains:

o the element instance name,

e the circuit nodes to which the element is connected,

« and the values of the parameters that determine the electrical characteristics of the
element.

The first letter of the element instance name specifies the element type. The format
for the ngspice element types is given in the following manual chapters. In the rest of
the manual, the strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric
strings.

For example, a resistor instance name must begin with the letter R and can contain one or
more characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details
of each type of device are supplied in a following section 3. Table 2.1 lists the element
types available in ngspice, sorted by their first letter.

2.1. GENERAL STRUCTURE AND CONVENTIONS

47

\ First letter \

Element description

Comments, links

12
analog (12.2
A XSPICE code model digitagl; E12'4§
mixed signal (12.3)

B Behavioral (arbitrary) source 5.1
C Capacitor 3.3.6
D Diode 7
E Voltage-controlled voltage source (VCVS) nl(;?fﬁflef:f(?é)
F Current-controlled current source (CCCs) linear (4.2.3)
G Voltage-controlled current source (VCCS) hnea‘ur (4:2.1),

non-linear (5.3)
H Current-controlled voltage source (CCVS) linear (4.2.4)
I Current source 4.1
J Junction field effect transistor (JFET) 9
K Coupled (Mutual) Inductors 3.3.12
L Inductor 3.3.10

11

M Metal oxide field effect transistor (MOSFET) BSIM3 (11.2.10)

BSIM4 (11.2.11)
N Numerical device for GSS 14.2
O Lossy transmission line 6.2
p Coupled multiconductor line (CPL) 6.4.2
Q Bipolar junction transistor (BJT) 8
R Resistor 3.3.1
S Switch (voltage-controlled) 3.3.15
T Lossless transmission line 6.1
U Uniformly distributed RC line 6.3
\Y Voltage source 4.1
W Switch (current-controlled) 3.3.15
X Subcircuit 2.5.3
Y Single lossy transmission line (TXL) 6.4.1
Z Metal semiconductor field effect transistor (MESFET) 10

Table 2.1: ngspice element types

2.1.4 Some naming conventions

Fields on a line are separated by one or more blanks, a comma, an equal (=) sign, or a left
or right parenthesis; extra spaces are ignored. A line may be continued by entering a ‘+’
(plus) in column 1 of the following line; ngspice continues reading beginning with column
2. A name field must begin with a letter (A through Z) and cannot contain any delimiters.
A number field may be an integer field (12, -44), a floating point field (3.14159), either
an integer or floating point number followed by an integer exponent (le-14, 2.65e3), or
either an integer or a floating point number followed by one of the following scale factors:

48 CHAPTER 2. CIRCUIT DESCRIPTION

\ Suffix \ Name \ Factor ‘

T Tera 10%2
G Giga 10°
Meg | Mega 10°
K Kilo 10°
mil Mil | 25.4 x 1076
m milli 1073
u micro 1076
n nano 107?
p pico 10712
f femto 1071

Table 2.2: Ngspice scale factors

Letters immediately following a number that are not scale factors are ignored, and letters
immediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all
represent the same number, and M, MA, MSec, and MMhos all represent the same scale
factor. Note that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same
number. Note that ‘M’ or ‘m’ denote ‘milli’, i.e. 1073, Suffix meg has to be used for 10°.

Nodes names may be arbitrary character strings and are case insensitive, if ngspice is used
in batch mode (16.4.1). If in interactive (16.4.2) or control (16.4.3) mode, node names
may either be plain numbers or arbitrary character strings, not starting with a number.
The ground node must be named ‘0’ (zero). For compatibility reason gnd is accepted as
ground node, and will internally be treated as a global node and be converted to ‘0. If
this is not feasible, you may switch the conversion off by setting set no_auto_gnd in one
of the configuration files spinit or .spiceinit. Fach circuit has to have a ground node (gnd
or 0)! Note the difference in ngspice where the nodes are treated as character strings
and not evaluated as numbers, thus ‘0" and 00 are distinct nodes in ngspice but not in
SPICE2.

Ngspice requires that the following topological constraints are satisfied:

o The circuit cannot contain a loop of voltage sources and/or inductors and cannot
contain a cut-set of current sources and/or capacitors.

e FEach node in the circuit must have a dc path to ground.

o Every node must have at least two connections except for transmission line nodes
(to permit unterminated transmission lines) and MOSFET substrate nodes (which
have two internal connections anyway).

2.2 Dot commands

This section summarizes all dot commands available in ngspice, with links to their detailed
presentation, in alphabetical order. Control section (or interactive) commands are listed
and explained in chapter 17.5.

.AC start an ac simulation (15.3.1).

2.2. DOT COMMANDS

.CONTROL start a .control section (16.4.3).

.CSPARAM define parameter(s) made available in a control section (2.11).
.DC start a dc simulation (15.3.2).

.DISTO start a distortion analysis simulation (15.3.3).

.ELSE conditional branching in the netlist (2.13).

.ELSEIF conditional branching in the netlist (2.13).

.END end of the netlist (2.3.2).

.ENDC end of the .control section (16.4.3).

.ENDIF conditional branching in the netlist (2.13).

.ENDS end of subcircuit definition (2.5.2).

.FOUR Fourier analysis of transient simulation output (15.6.4).
.FUNC define a function (2.10).

.GLOBAL define global nodes (2.6).

.IC set initial conditions (15.2.2).

.IF conditional branching in the netlist (2.13).

.INCLUDE include part of the netlist (2.7).

.LIB include a library (2.8).

.MEAS measurements during the simulation (15.4).

.MODEL list of device model parameters (2.4).

.NODESET set initial conditions (15.2.1).

.NOISE start a noise simulation (15.3.4).

.0P start an operating point simulation (15.3.5).

.OPTIONS set simulator options (15.1).

.PARAM define parameter(s) (2.9).

.PLOT printer plot during batch simulation (15.6.3).

.PRINT tabular listing during batch simulation (15.6.2).
.PROBE same as .SAVE: name simulation result vectors to be saved (15.6.1).
.PSS start a periodic steady state analysis (15.3.11).

.PZ start a pole-zero analysis simulation (15.3.6).

49

20 CHAPTER 2. CIRCUIT DESCRIPTION

.SAVE name simulation result vectors to be saved (15.6.1).
.SENS start a sensitivity analysis (15.3.7).

.SUBCKT start of subcircuit definitions (2.5).

.TEMP set the ciruit temperature (2.12).

.TF start a transfer function analysis (15.3.8).

.TITLE title of the netlist (2.3.1).

.TRAN start a transient simulation (15.3.9).

.WIDTH width of printer plot (15.6.7).

2.3 Basic lines

2.3.1 .TITLE line

Examples:

POWER AMPLIFIER CIRCUIT

* additional lines following

Test of CAM cell
* additional lines following

The title line must be the first in the input file. Its contents are printed verbatim as the
heading for each section of output.

As an alternative, you may place a .TITLE <any title> line anywhere in your input
deck. The first line of your input deck will be overridden by the contents of this line
following the .TITLE statement.

.TITLE line example:

%k 3k 3k %k 5k 3k %k 5k %k %k 5k %k %k 5k %k %k 5k %k %k 5k %k %k 5k %k %k 5k %k %k % %k

* additional lines following
*

.TITLE Test of CAM cell
* additional lines following

will internally be replaced by

2.3. BASIC LINES 51

Internal input deck:

Test of CAM cell
* additional lines following
%

*TITLE Test of CAM cell
* additional lines following
...

2.3.2 .END Line

Examples:

.end

The .end line must always be the last in the input file. Note that the period is an integral
part of the name.

2.3.3 Comments

General Form:
* <any comment>
Examples:

* RF=1K Gain should be 100
* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines
may be placed anywhere in the circuit description.

2.3.4 End-of-line comments

General Form

<any command> $ <any comment >
<any command> ; <any comment>

Examples:

RF2=1K $ Gain should be 100
C1=10p ; Check open-loop gain and phase margin
.param nl=1 //new value

52 CHAPTER 2. CIRCUIT DESCRIPTION

ngspice supports comments that begin with double characters ‘¢ ’ (dollar plus space) or
‘//’. For readability you should precede each comment character with a space. ngspice
will accept the single character ‘$’.

Please note that the ‘$’ character is not a valid end-of-line comment delimiter, if the
PSPICE compatibility mode (16.14.5) has been chosen. Then ’$’ becomes an ordinary
character.

2.3.5 Continuation lines

General Form:

<any command>
+ <continuation of any command> ; some comment
+ <further continuation of any command>

If input lines get overly long, they may be split into two or more lines (e.g. for better
readability). Internally they will be merged into a single line. Each follow-up line starts
with charachter '+ ’ plus additional space. Follw-up lines have to follow immediately after
each other. End-of-line comments will be ignored. The following lines do not allow using
continuation lines: .title, .1lib, and .include.

2.4 .MODEL Device Models

General form:
.model mname type(pnamel=pvall pname2=pval2 ...)
Examples:

.model MOD1 npn (bf=50 is=1e-13 vbf=50)

Most simple circuit elements typically require only a few parameter values. However,
some devices (semiconductor devices in particular) that are included in ngspice require
many parameter values. Often, many devices in a circuit are defined by the same set of
device model parameters. For these reasons, a set of device model parameters is defined
on a separate .model line and assigned a unique model name. The device element lines
in ngspice then refer to the model name.

For these more complex device types, each device element line contains the device name,
the nodes the device is connected to, and the device model name. In addition, other
optional parameters may be specified for some devices: geometric factors and an initial
condition (see the following section on Transistors (8 to 11) and Diodes (7) for more
details). mname in the above is the model name, and type is one of the following fifteen

types:

2.5. .SUBCKT SUBCIRCUITS 53

\ Code \ Model Type \
R Semiconductor resistor model
C Semiconductor capacitor model
L Inductor model
SW Voltage controlled switch
CSW Current controlled switch
URC Uniform distributed RC model
LTRA Lossy transmission line model
D Diode model
NPN NPN BJT model
PNP PNP BJT model
NJF N-channel JFET model
PJF P-channel JFET model
NMOS N-channel MOSFET model
PMOS P-channel MOSFET model
NMF N-channel MESFET model
PMF P-channel MESFET model
VDMOS Power MOS model

Table 2.3: Ngspice model types

Parameter values are defined by appending the parameter name followed by an equal sign
and the parameter value. Model parameters that are not given a value are assigned the
default values given below for each model type. Models are listed in the section on each
device along with the description of device element lines. Model parameters and their
default values are given in Chapt. 31.

2.5 .SUBCKT Subcircuits

A subcircuit that consists of ngspice elements can be defined and referenced in a fashion
similar to device models. Subcircuits are the way ngspice implements hierarchical mod-
eling, but this is not entirely true because each subcircuit instance is flattened during
parsing, and thus ngspice is not a hierarchical simulator.

The subcircuit is defined in the input deck by a grouping of element cards delimited by
the .subckt and the .ends cards (or the keywords defined by the substart and subend
options (see 17.7)); the program then automatically inserts the defined group of elements
wherever the subcircuit is referenced. Instances of subcircuits within a larger circuit are
defined through the use of an instance card that begins with the letter ‘X A complete
example of all three of these cards follows:

54 CHAPTER 2. CIRCUIT DESCRIPTION

Example:

* The following is the instance card:
*

xdivl 10 7 0 vdivide

* The following are the subcircuit definition cards:
*

.subckt vdivide 1 2 3

r1 1 2 10K

r2 2 3 5K

.ends

The above specifies a subcircuit with ports numbered ‘17, ‘2’ and ‘3’

e Resistor ‘R1’ is connected from port ‘1’ to port ‘2’, and has value 10 kOhms.

e Resistor ‘R2’ is connected from port ‘2’ to port ‘3", and has value 5 kOhms.

The instance card, when placed in an ngspice deck, will cause subcircuit port ‘1’ to be
equated to circuit node ‘10’, while port ‘2’ will be equated to node ‘7" and port ‘3’ will
equated to node ‘0’.

There is no limit on the size or complexity of subcircuits, and subcircuits may contain
other subcircuits. An example of subcircuit usage is given in Chapt. 21.6.

2.5.1 .SUBCKT Line

General form:
.SUBCKT subnam N1 <N2 N3 ...>
Examples:

.SUBCKT OPAMP 1 2 3 4

A circuit definition is begun with a .SUBCKT line. subnam is the subcircuit name, and
N1, N2, ... are the external nodes, which cannot be zero. The group of element lines
that immediately follow the .SUBCKT line define the subcircuit. The last line in a sub-
circuit definition is the .ENDS line (see below). Control lines may not appear within a
subcircuit definition; however, subcircuit definitions may contain anything else, including
other subcircuit definitions, device models, and subcircuit calls (see below). Note that
any device models or subcircuit definitions included as part of a subcircuit definition are
strictly local (i.e., such models and definitions are not known outside the subcircuit defi-
nition). Also, any element nodes not included on the .SUBCKT line are strictly local, with
the exception of 0 (ground) that is always global. If you use parameters, the .SUBCKT line
will be extended (see 2.9.3).

2.6. .GLOBAL 25

2.5.2 .ENDS Line

General form:
.ENDS <SUBNAM>
Examples:

.ENDS OPAMP

The .ENDS line must be the last one for any subcircuit definition. The subcircuit name,
if included, indicates which subcircuit definition is being terminated; if omitted, all sub-
circuits being defined are terminated. The name is needed only when nested subcircuit
definitions are being made.

2.5.3 Subcircuit Calls

General form:
XYYYYYYY N1 <N2 N3 ...> SUBNAM
Examples:

X1 2 4 17 3 1 MULTI

Subcircuits are used in ngspice by specifying pseudo-elements beginning with the letter
X, followed by the circuit nodes to be used in expanding the subcircuit. If you use
parameters, the subcircuit call will be modified (see 2.9.3).

2.6 .GLOBAL

General form:
.GLOBAL nodename
Examples:

.GLOBAL gnd vcc

Nodes defined in the .GLOBAL statement are available to all circuit and subcircuit blocks
independently from any circuit hierarchy. After parsing the circuit, these nodes are ac-
cessible from top level.

26 CHAPTER 2. CIRCUIT DESCRIPTION

2.7 .INCLUDE

General form:
. INCLUDE filename
Examples:

.INCLUDE /users/spice/common/bsim3-param.mod

Frequently, portions of circuit descriptions will be reused in several input files, particularly
with common models and subcircuits. In any ngspice input file, the . INCLUDE line may
be used to copy some other file as if that second file appeared in place of the .INCLUDE
line in the original file.

There is no restriction on the file name imposed by ngspice beyond those imposed by the
local operating system.

2.8 .LIB

General form:
.LIB filename libname
Examples:

.LIB /users/spice/common/mosfets.lib mosl

The .LIB statement allows including library descriptions into the input file. Inside the
*1ib file a library libname will be selected. The statements of each library inside the
*1ib file are enclosed in .LIB libname <...> .ENDL statements.

If the compatibility mode (16.14) is set to ’ps’ by set ngbehavior=ps (17.7) in spinit
(16.5) or .spiceinit (16.6), then a simplified syntax .LIB filename is available: a warning
is issued and filename is simply included as described in Chapt. 2.7.

2.9 .PARAM Parametric netlists

Ngspice allows for the definition of parametric attributes in the netlists. This is an
enhancement of the ngspice front-end that adds arithmetic functionality to the circuit
description language.

2.9. .PARAM PARAMETRIC NETLISTS 57

2.9.1 .param line

General form:
.param <ident> = <expr> <ident> = <expr>
Examples:

.param pippo=5

.param po=6 pp=7.8 pap={AGAUSS(pippo, 1, 1.67)%
.param pippp={pippo + pp}

.param p={pp}

.param pop=’pp+p’

This line assigns numerical values to identifiers. More than one assignment per line
is possible using a separating space. Parameter identifier names must begin with an
alphabetic character. The other characters must be either alphabetic, a number, or ! #
$ % [] _ as special characters. The variables time, temper, and hertz (see 5.1.1) are
not valid identifier names. Other restrictions on naming conventions apply as well, see
2.9.6.

The .param lines inside subcircuits are copied per call, like any other line. All assignments
are executed sequentially through the expanded circuit. Before its first use, a parameter
name must have been assigned a value. Expressions defining a parameter should be put
within braces {p+p2}, or alternatively within single quotes ’AGAUSS (pippo, 1, 1.67)°.
An assignment cannot be self-referential, something like .param pip = ’pip+3’ will not
work.

The current ngspice version does not always need quotes or braces in expressions, es-
pecially when spaces are used sparingly. However, it is recommended to do so, as the
following examples demonstrate.

.param a = 123 * 3 b = sqrt(9) $ doesn’t work, a <= 123
.param a = 123 * 3’ b = sqrt(9) $ ok.

.param ¢ = a + 123 $ won’t work

.param ¢ = ’a + 123’ $ ok.

.param ¢ = a+123 $ ok.

2.9.2 Brace expressions in circuit elements:
General form:

{ <expr> }
Examples:

These are allowed in .model lines and in device lines. A SPICE number is a floating
point number with an optional scaling suffix, immediately glued to the numeric tokens

o8 CHAPTER 2. CIRCUIT DESCRIPTION

(see Chapt. 2.9.5). Brace expressions ({..}) cannot be used to parameterize node names
or parts of names. All identifiers used within an <expr> must have known values at the
time when the line is evaluated, else an error is flagged.

2.9.3 Subcircuit parameters

General form:
.subckt <identn> node node ... <ident >=<value> <ident>=<value>
Examples:

.subckt myfilter in out rval=100k cval=100nF

<identn> is the name of the subcircuit given by the user. node is an integer number
or an identifier, for one of the external nodes. The first <ident>=<value> introduces an
optional section of the line. Each <ident> is a formal parameter, and each <value> is
either a SPICE number or a brace expression. Inside the .subcktends context, each
formal parameter may be used like any identifier that was defined on a .param control
line. The <value> parts are supposed to be default values of the parameters. However,
in the current version of ngspice, they are not used and each invocation of the subcircuit
must supply the _exact_ number of actual parameters.

The syntax of a subcircuit call (invocation) is:

General form:
X<name> node node ... <identn> <ident>=<value> <ident>=<value>
Examples:

X1 input output myfilter rval=1k cval=1ln

Here <name> is the symbolic name given to that instance of the subcircuit, <identn>
is the name of a subcircuit defined beforehand. node node ... is the list of actual
nodes where the subcircuit is connected. <value> is either a SPICE number or a brace
expression { <expr> } . The sequence of <value> items on the X line must exactly
match the number and the order of formal parameters of the subcircuit.

2.9. .PARAM PARAMETRIC NETLISTS 29

Subcircuit example with parameters:

* Param-example
.param amplitude= 1V
*

.subckt myfilter in out rval=100k cval=100nF
Ra in pl {2xrval}
Rb pl out {2*rval}
Ci1 p1 O {2*cval}
Ca in p2 {cvalt}

Cb p2 out A{cval}

R1 p2 0 {rval}
.ends myfilter

X1 input output myfilter rval=1k cval=1n
V1 input O AC {amplitude}
.end

2.9.4 Symbol scope

All subcircuit and model names are considered global and must be unique. The .param
symbols that are defined outside of any .subcktends section are global. Inside such
a section, the pertaining params: symbols and any .param assignments are considered
local: they mask any global identical names, until the .ends line is encountered. You
cannot reassign to a global number inside a .subckt, a local copy is created instead.
Scope nesting works up to a level of 10. For example, if the main circuit calls A that has
a formal parameter xx, A calls B that has a param. xx, and B calls C that also has a
formal param. xx, there will be three versions of ‘xx’ in the symbol table but only the
most local one - belonging to C - is visible.

2.9.5 Syntax of expressions

<expr> (optional parts within [...])

An expression may be one of:

<atom> where <atom> is either a spice number or an identifier
<unary-operator> <atom>

<function-name> (<expr> [, <expr> ...])

<atom> <binary-operator> <expr>

(<expr>)

As expected, atoms, built-in function calls and stuff within parentheses are evaluated
before the other operators. The operators are evaluated following a list of precedence
close to the one of the C language. For equal precedence binary ops, evaluation goes left
to right. Functions operate on real values only!

60 CHAPTER 2. CIRCUIT DESCRIPTION

] Operator \f\has \I’recedence \ Description ‘
- 1 unary -
! 1 unary not
*% - 2 power, like pwr
* 3 multiply
/ 3 divide
b 3 modulo
\ 3 integer divide
+ 4 add
- 4 subtract
==) equality
I= <> 5 non-equal
<= 5 less or equal
>=) greater or equal
<) less than
>) greater than
&& 6 boolean and
|] 7 boolean or

c?x:y 8 ternary operator

The number zero is used to represent boolean False. Any other number represents boolean
True. The result of logical operators is 1 or 0. An example input file is shown below:

Example input file with logical operators:

* Logical operators

vior 10 {1 |l 0}
viand 2 0 {1 && 0O}
vinot 3 0 {! 1}
vimod 4 0 {5 % 3%
vidiv 5 0 {5 \ 3}
vOnot 6 0 {! 0}
.control

op

print allv

.endc

.end

2.9. .PARAM PARAMETRIC NETLISTS

] Built-in function

Notes

sqrt(x)

y = sqrt(x)

sin(x), cos(x), tan(x)

sinh(x), cosh(x), tanh(x)

asin(x), acos(x), atan(x)

asinh(x), acosh(x), atanh(x)

arctan(x) atan(x), kept for compatibility
exp(x)
In(x), log(x)
abs(x)
nint(x) Nearest integer, half integers towards even
int(x) Nearest integer rounded towards 0
floor(x) Nearest integer rounded towards -oo
ceil(x) Nearest integer rounded towards +oo
pow(x,y) x raised to the power of y (pow from C runtime library)
pwr(x,y) pow(fabs(x), y)
min(x, y)
max(x, y)
sgn(x) 1.0 for x > 0, 0.0 for x == 0, -1.0 for x < 0

ternary_fen(x, y, z)

xX? y: z

gauss(nom, rvar, sigma)

nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation rvar
(relative to nominal), divided by sigma

agauss(nom, avar, sigma)

nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation avar
(absolute), divided by sigma

unif(nom, rvar)

nominal value plus relative variation (to nominal)
uniformly distributed between + /-rvar

aunif(nom, avar)

nominal value plus absolute variation uniformly
distributed between + /-avar

limit(nom, avar)

nominal value +/-avar, depending on random number
in [-1, 1] being > 0 or < 0

The scaling suffixes (any decorative alphanumeric string may follow):

’ suffix \ value ‘

g 1e9
meg le6
le3
le-3
le-6
1le-9
le-12
le-15

o e | B

Note: there are intentional redundancies in expression syntax, e.g.

X7y , xx*y and

pwr(x,y) all have nearly the same result.

61

62 CHAPTER 2. CIRCUIT DESCRIPTION

2.9.6 Reserved words

In addition to the above function names and to the verbose operators (not and or div
mod), other words are reserved and cannot be used as parameter names: or, defined,
sqr, sqrt, sin, cos, exp, 1n, log, loglO, arctan, abs, pwr, time, temper, hertz.

2.9.7 A word of caution on the three ngspice expression parsers

The historical parameter notation using & as the first character of a line as equivalence
to .param. is deprecated and will be removed in a coming release.

Confusion may arise in ngspice because of its multiple numerical expression features. The
.param lines and the brace expressions (see Chapt. 2.10) are evaluated in the front-
end, that is, just after the subcircuit expansion. (Technically, the X lines are kept as
comments in the expanded circuit so that the actual parameters can be correctly sub-
stituted). Therefore, after the netlist expansion and before the internal data setup, all
number attributes in the circuit are known constants. However, there are circuit elements
in Spice that accept arithmetic expressions not evaluated at this point, but only later
during circuit analysis. These are the arbitrary current and voltage sources (B-sources,
5), as well as E- and G-sources and R-, L-, or C-devices. The syntactic difference is that
‘compile-time’ expressions are within braces, but ‘run-time’ expressions have no braces.
To make things more complicated, the back-end ngspice scripting language accepts arith-
metic/logic expressions that operate only on its own scalar or vector data sets (17.2).
Please see Chapt. 2.14.

It would be desirable to have the same expression syntax, operator and function set,
and precedence rules, for the three contexts mentioned above. In the current Numparam
implementation, that goal is not achieved.

2.10 .FUNC

This keyword defines a function. The syntax of the expression is the same as for a . param
(2.9.5).

General form:

.func <ident> { <expr> }

.func <ident> = { <expr> }
Examples:
.func icos(x) {cos(x) - 1}

.func f(x,y) {xx*y}
.func foo(a,b) = {a + b}

.func will initiate a replacement operation. After reading the input files, and before
parameters are evaluated, all occurrences of the icos(x) function will be replaced by

2.11. .CSPARAM 63

cos(x)-1. All occurrences of f(x,y) will be replaced by x*y. Function statements may
be nested to a depth of t.b.d..

2.11 .CSPARAM

Create a constant vector (see 17.8.2) from a parameter in plot (17.3) const.

General form:
.csparam <ident> = <expr>
Examples:

.param pippo=5

.param pp=6

.csparam pippp={pippo + pp}
.param p={pp}’

.csparam pap=’pp+p’

In the example shown, vectors pippp, and pap are added to the constants that already
reside in plot const, having length one and real values. These vectors are generated dur-
ing circuit parsing and thus cannot be changed later (same as with ordinary parameters).
They may be used in ngspice scripts and .control sections (see Chapt. 17).

The use of .csparam is still experimental and has to be tested. A simple usage is shown
below.

* test csparam

.param TEMPS = 27

.csparam newt = {3*TEMPS}
.csparam mytemp = ’2 + TEMPS’
.control

echo $&newt $&mytemp

.endc

.end

2.12 .TEMP

Sets the circuit temperature in degrees Celsius.

General form
.temp value
Examples:

.temp 27

64 CHAPTER 2. CIRCUIT DESCRIPTION

This card overrides the circuit temperature given in an .option line (15.1.1).

2.13 .IF Condition-Controlled Netlist

A simple . IF-.ELSE(IF) block allows condition-controlling of the netlist. boolean expression
is any expression according to Chapt. 2.9.5 that evaluates parameters and returns a
boolean 1 or 0. The netlist block in between the .ifendif statements may contain
device instances or .model cards that are selected according to the logic condition.

2.13. .IF CONDITION-CONTROLLED NETLIST 65

General form:

.if (boolean expression)
:éiseif(boolean expression)
Lelse
endif

Example 1:

* device instance in IF-ELSE block
.param ok=0 ok2=1

vi

101
R1 1 0 2
.if (ok && ok2)
R11 1 0 2
.else
R11 1 0 0.5 $ <-- selected

.endif
Example 2:

* .model in IF-ELSE block
.param m0=0 ml=1

M1 1 2 3 4 N1 W=1 L=0.5

.if (m0==1)

.model N1 NMOS level=49 Version=3.1

.elseif (m1==1)

.model N1 NMOS level=49 Version=3.2.4 $ <-- selected
.else

.model N1 NMOS level=49 Version=3.3.0

.endif

Nesting of .IF-.ELSE(IF)-.ENDIF blocks is possible. Several .elseif are allowed per
block, of course only one . else (please see example ngspice/tests/regression/misc/if-elseif.cir).
However some restrictions apply, as the following netlist components are not supported
within the .IF-.ENDIF block: .SUBCKT, .INC, .LIB, and .PARAM.

66 CHAPTER 2. CIRCUIT DESCRIPTION

2.14 Parameters, functions, expressions, and com-
mand scripts

In ngspice there are several ways to describe functional dependencies. In fact there are
three independent function parsers, being active before, during, and after the simulation.
So it might be due to have a few words on their interdependence.

2.14.1 Parameters

Parameters (Chapt. 2.9.1) and functions, either defined within the .param statement or
with the .func statement (Chapt. 2.10) are evaluated before any simulation is started,
that is during the setup of the input and the circuit. Therefore these statements may not
contain any simulation output (voltage or current vectors), because it is simply not yet
available. The syntax is described in Chapt. 2.9.5. During the circuit setup all functions
are evaluated, all parameters are replaced by their resulting numerical values. Thus it will
not be possible to get feedback from a later stage (during or after simulation) to change
any of the parameters.

2.14.2 Nonlinear sources

During the simulation, the B source (Chapt. 5) and their associated E and G sources, as
well as some devices (R, C, L) may contain expressions. These expressions may contain
parameters from above (evaluated immediately upon ngspice start up), numerical data,
predefined functions, but also node voltages and branch currents resulting from the sim-
ulation. The source or device values are continuously updated during the simulation.
Therefore the sources are powerful tools to define non-linear behavior, you may even cre-
ate new ‘devices’ by yourself. Unfortunately the expression syntax (see Chapt. 5.1) and
the predefined functions may deviate from the ones for parameters listed in 2.9.1.

2.14.3 Control commands, Command scripts

Commands, as described in detail in Chapt. 17.5, may be used interactively, but also
as a command script enclosed in .controlendc lines. The scripts may contain
expressions (see Chapt. 17.2). The expressions may work upon simulation output vectors
(of node voltages, branch currents), as well as upon predefined or user defined vectors
and variables, and are invoked after the simulation. Parameters from 2.9.1 defined by
the .param statement are not allowed in these expressions. However you may define such
parameters with .csparam (2.11). Again the expression syntax (see Chapt. 17.2) will
deviate from the one for parameters or B sources listed in 2.9.1 and 5.1.

If you want to use parameters from 2.9.1 inside your control script, you may use .csparam
(2.11) or apply a trick by defining a voltage source with the parameter as its value,
and then have it available as a vector (e.g. after a transient simulation) with a then
constant output (the parameter). A feedback from here back into parameters (2.14.1)
is never possible. Also you cannot access non-linear sources of the preceding simulation.
However you may start a first simulation inside your control script, then evaluate its

2.14. PARAMETERS, FUNCTIONS, EXPRESSIONS, AND COMMAND SCRIPTS67

output using expressions, change some of the element or model parameters with the
alter and altermod statements (see Chapt. 17.5.3) and then automatically start a new
simulation.

Expressions and scripting are powerful tools within ngspice, and we will enhance the
examples given in Chapt. 21 continuously to describe these features.

68

CHAPTER 2. CIRCUIT DESCRIPTION

Chapter 3

Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (‘< >’) are optional.
All indicated punctuation (parentheses, equal signs, etc.) is optional but indicate the
presence of any delimiter. Further, future implementations may require the punctuation
as stated. A consistent style adhering to the punctuation shown here makes the input
easier to understand. With respect to branch voltages and currents, ngspice uniformly
uses the associated reference convention (current flows in the direction of voltage drop).

3.1 About netlists, device instances, models and model
parameters

The input to ngspice is a netlist, which lists all circuit elements, their interconnects and
model parameters.

Netlist example of a simple bipolar amplifier:

bipolar amplifier

R3 vcc intc 10k

R1 vcc intb 68k

R2 intb 0 10k

Cout out intc 10u

Cin intb in 10u

RLoad out 0 100k

Q1 intc intb O BC546B

VCC wvcc 0 5
Vin in 0 dc 0 ac 1 sin(0 1m 500)

.model BC546B npn (IS=7.59E-15 VAF=73.4 BF=480 IKF=0.0962 NE=1.266
+ ISE=3.278E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1 BR=5 RC=0.25 CJC=
+ FC=0.5 MJC=0.33 VJC=0.65 CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.26E-
+ ITF=0.6 VTF=3 XTF=20 RB=100 IRB=0.0001 RBM=10 RE=0.5 TR=1.50E-07)
.end

69

70 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

After the first line, which is always a title line only, the netlist starts. Each line here is a
device instance (except for lines starting with a dot ”’). We have simple circuit elements
that consist of a single line only, e.g. resistors like R3. In its simplest implementation,
the resistor model does not need any model parameters except for the resistance value
(same for capacitors like Cout). Netlist lines like R3 vce intc 10k are called instance lines,
as each line is the representation of an instance of a generic model hard-coded into the
ngspice simulator (here: resistor). R3 denotes the device name. Its first character R
denotes a resistor. The next two tokens vcc intc are the two nodes of the resistor, 10k is
the resistance value. Equal node names on different devices denote a connection between
these nodes.

A more complex device is described by the instance line Q1 intc intb 0 BC546B. Q denotes
a bipolar transistor, intc intb 0 are the three nodes collector, base, and emitter. BC546B is
the name of a model parameter set, named after a real transistor and describing (together
with the implemented bipolar transistor model) its electrical behavior. The associated
model parameters are given in the line .model BC546B npn (IS=7.59E-15 ...). This is not an
instance line, because starting with a dot. It contains the model parameters as supplied by
the device manufacturer or by people having them extracted from the electrical behavior
and data sheet (to be found e.g. on his or her web pages). BC546B is the name of the
model parameter set and relates it to the device instance. npn is the type of the device.
The parameters (name=value) are given in brackets.

The instance Q1... requires model parameters. For a quick test one may do without
device maker’s model parameters.

Simplified bipolar transistor instance and model parameter set:

Q1 intc intb O defaultmod
.model defaultmod npn

If you enter the bipolar transistor instance as shown above, you make use of a default
model parameter set supplied by ngspice. defaultmod is an arbitrary name. This procedure
models a generic bipolar transistor, not resembling any commercial device. The default
parameter values may be assessed by the command showmod Q1.

You will get more information on devices, instances and models in the following chapters
3.3 to 12.

3.2 General options

3.2.1 Paralleling devices with multiplier m

When it is needed to simulate several devices of the same kind in parallel, use the ‘m’
(parallel multiplier) instance parameter available for the devices listed in Table 3.1. This
multiplies the value of the element’s matrix stamp with m’s value. The netlist below shows
how to correctly use the parallel multiplier:

3.2. GENERAL OPTIONS 71

Multiple device example:

dl 2 0 mydiode m=10

d01 1 0 mydiode
d02 1 0 mydiode
d03 1 0 mydiode
d04 1 0 mydiode
d05 1 0 mydiode
d06 1 0 mydiode
d07 1 0 mydiode
d08 1 0 mydiode
d09 1 0 mydiode
d10 1 O mydiode

The d1 instance connected between nodes 2 and 0 is equivalent to the 10 parallel devices
d01-d10 connected between nodes 1 and 0.

The following devices support the multiplier m:

’ First letter \ Element description ‘

Capacitor
Diode
Current-controlled current source (CCCs)
Voltage-controlled current source (VCCS)
Current source
Junction field effect transistor (JFET)
Inductor
Metal oxide field effect transistor (MOSFET)
Bipolar junction transistor (BJT)
Resistor
Subcircuit (for details see below)
Metal semiconductor field effect transistor (MESFET)

N4 BO| Z || = QT O

Table 3.1: ngspice elements supporting multiplier 'm’

When the X line (e.g. x1 a b subl m=5) contains the token m=value (as shown) or
m=expression, subcircuit invocation is done in a special way. If an instance line of the
subcircuit subl contains any of the elements shown in table 3.1, then these elements are
instantiated with the additional parameter m (in this example having the value 5). If such
an element already has an m multiplier parameter, the element m is multiplied with the
m derived from the X line. This works recursively, meaning that if a subcircuit contains
another subcircuit (a nested X line), then the latter m parameter will be multiplied by the
former one, and so on.

72 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example 1:

.param madd = 6
X1 a b subl m=5
.subckt subl al bl
Csl al bl C=bp m=’madd-2°’
.ends

In example 1, the capacitance between nodes a and b will be C = 5pF*(madd-2)*5 =
100pF.

Example 2:

.param madd = 4
X1 a b subl m=3
.subckt subl al bl
X2 al bl sub2 m=’madd-2°
.ends
.subckt sub2 a2 b2
Cs2 a2 b2 3p m=2
.ends

In example 2, the capacitance between nodes a and b is C = 3pF*2*(madd-2)*3 = 36pF.

Using m may fail to correctly describe geometrical properties for real devices like MOS
transistors.

M1 d g s nmos W=0.3u L=0.18u m=20
is probably not be the same as
M1 d g s nmos W=6u L=0.18u

because the former may suffer from small width (or edge) effects, whereas the latter is
simply a wide transistor.

3.2.2 Instance and model parameters

The simple device example below consists of two lines: The device is defined on the
instance line, starting with Lload The first letter determines the device type (an
inductor in this example). Following the device name are two nodes 1 and 2, then the
inductance value 1u is set. The model name ind1 is a connection to the respective model
line. Finally we have a parameter on the instance line, together with its value dtemp=>5.
Parameters on an instance line are called instance parameters.

The model line starts with the token .model, followed by the model name, the model type
and at least one model parameter, here tc1=0.001. There are complex models with more
than 100 model parameters.

Lload 1 2 1u indl dtemp=5
.MODEL indl L tc1=0.001

3.2. GENERAL OPTIONS 73

Instance parameters are listed in each of the following device descriptions. Model pa-
rameters sometimes are given below as well, for complex models like the BSIM transistor
models, they are available in the model makers documentation. Instance parameters may
also be placed in the .model line. Thus they are recognized by each device instance refer-
ring to that model. Their values may be overridden for a specific instance of a device by
placing them additionally onto its instance line.

3.2.3 Model binning

Binning is a kind of range partitioning for geometry dependent models like MOSFET’s.
The purpose is to cover larger geometry ranges (Width and Length) with higher accuracy
than the model built-in geometry formulas. Each size range described by the additional
model parameters LMIN, LMAX, WMIN and WMAX has its own model parameter set.
These model cards are defined by a number extension, like ‘nch.1’. ngspice has an algo-
rithm to choose the right model card by the requested W and L.

This is implemented for BSIM3 (11.2.10) and BSIM4 (11.2.11) models.

3.2.4 Initial conditions

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable
state. If a device is specified OFF, the dc operating point is determined with the terminal
voltages for that device set to zero. After convergence is obtained, the program continues
to iterate to obtain the exact value for the terminal voltages. If a circuit has more than
one dc stable state, the OFF option can be used to force the solution to correspond to a
desired state. If a device is specified OFF when in reality the device is conducting, the
program still obtains the correct solution (assuming the solutions converge) but more
iterations are required since the program must independently converge to two separate
solutions.

The .NODESET control line (see Chapt. 15.2.1) serves a similar purpose as the OFF option.
The .NODESET option is easier to apply and is the preferred means to aid convergence. The
second form of initial conditions are specified for use with the transient analysis. These
are true ‘initial conditions’ as opposed to the convergence aids above. See the description
of the .IC control line (Chapt. 15.2.2) and the .TRAN control line (Chapt. 15.3.9) for a
detailed explanation of initial conditions.

http://ngspice.sourceforge.net/literature.html

74 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3 Elementary Devices

3.3.1 Resistors

General form:

RXXXXXXX n+ n- <resistancel|r=>value <ac=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val> <tc2=val>
+ <noisy=0[1>

Examples:

R1 1 2 100

RC1 12 17 1K

R2 5 7 1K ac=2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and semi-
conductor resistors. Semiconductor resistors in ngspice means: resistors described by
geometrical parameters. So, do not expect detailed modeling of semiconductor effects.

n+ and n- are the two element nodes, value is the resistance (in ohms) and may be
positive or negative! but not zero.

Simulating small valued resistors: If you need to simulate very small
resistors (0.001 Ohm or less), you should use CCVS (transresistance).
It is less efficient but improves overall numerical accuracy. Consider a
small resistance as a large conductance.

Ngspice can assign a resistor instance a different value for AC analysis, specified using the
ac keyword. This value must not be zero as described above. The AC resistance is used
in AC analysis only (neither Pole-Zero nor Noise). If you do not specify the ac parameter,
it is defaulted to value.

Ngspice calculates the nominal resistance as

_ VALUE scale
Rnom = m ()
3.1
R _ ac scale
acnom — m_ "

If you want to simulate temperature dependence of a resistor, you need to specify its tem-
perature coefficients, using a .model line or as instance parameters, like in the examples
below:

LA negative resistor modeling an active element can cause convergence problems, please avoid it.

3.3. ELEMENTARY DEVICES 75

Examples:

RE1 1 2 800 newres dtemp=5
.MODEL newres R tc1=0.001

RE2 a b 1.4k tcl=2m tc2=1.4u

RE3 nl n2 1Meg tce=700m

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence
(see equation 1.6) of the resistance. If given in the instance line (the R... line) their
values will override the tcl and tc2 of the .model line (3.3.3). Ngspice has an additional
temperature model equation 3.2 parameterized by tce given in model or instance line. If
all parameters are given (quadratic and exponential) the exponential temperature model
is chosen.

R(T) = R(Ty) [1.017F(T-T0)] (3.2)

where T is the circuit temperature, T is the nominal temperature, and T'C'E is the
exponential temperature coefficients.

Instance temperature is useful even if resistance does not vary with it, since the thermal
noise generated by a resistor depends on its absolute temperature. Resistors in ngspice
generates two different noises: thermal and flicker. While thermal noise is always gener-
ated in the resistor, to add a flicker noise? source you have to add a .model card defining
the flicker noise parameters. It is possible to simulate resistors that do not generate any
kind of noise using the noisy (or noise) keyword and assigning zero to it, as in the
following example:

Example:

Rmd 134 57 1.5k noisy=0

If you are interested in temperature effects or noise equations, read the next section on
semiconductor resistors.

2Flicker noise can be used to model carbon resistors.

76 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n- <value> <mname> <l=length> <w=width>
+ <temp=val> <dtemp=val> <m=val> <ac=val> <scale=val>
+ <noisy = 0[1>

Examples:

RLOAD 2 10 10K
RMOD 3 7 RMODEL L=10u W=1u

This is the more general form of the resistor presented before (3.3.1) and allows the
modeling of temperature effects and for the calculation of the actual resistance value from
strictly geometric information and the specifications of the process. If value is specified,
it overrides the geometric information and defines the resistance. If mname is specified,
then the resistance may be calculated from the process information in the model mname
and the given length and width. If value is not specified, then mname and length must
be specified. If width is not specified, then it is taken from the default width given in
the model.

The (optional) temp value is the temperature at which this device is to operate, and
overrides the temperature specification on the .option control line and the value specified
in dtemp.

3.3.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to
be calculated from geometric information and to be corrected for temperature. The
parameters available are as follows:

’ Name \ Parameter \ Units \ Default \ Example ‘
TC1 first order temperature coeft. Qfoc 0.0 -
TC2 second order temperature coeft. Qfoc2 0.0 -
RSH sheet resistance /g - 50

DEFW default width m le-6 2e-6
NARROW narrowing due to side etching m 0.0 le-7
SHORT shortening due to side etching m 0.0 le-7
TNOM parameter measurement temperature °C 27 50
KF flicker noise coefficient 0.0 le-25
AF flicker noise exponent 0.0 1.0
WF flicker noise width exponent 1.0
LF flicker noise length exponent 1.0
EF flicker noise frequency exponent 1.0
R (RES) | default value if element value not given | Q - 1000

The sheet resistance is used with the narrowing parameter and 1 and w from the resistor
device to determine the nominal resistance by the formula:

3.3. ELEMENTARY DEVICES 77

o .y L= SHORT
nom = IS T NARROW

(3.3)

DEFW is used to supply a default value for w if one is not specified for the device. If either
rsh or 1 is not specified, then the standard default resistance value of 1 mOhm is used.
TNOM is used to override the circuit-wide value given on the .options control line where
the parameters of this model have been measured at a different temperature. After the
nominal resistance is calculated, it is adjusted for temperature by the formula:

R(T) = R(TNOM) (1 + TCL(T — TNOM) + TC(T — TNOM)2> (3.4)

where R(TNOM) = R,om|Racnom- In the above formula, ‘T” represents the instance
temperature, which can be explicitly set using the temp keyword or calculated using the
circuit temperature and dtemp, if present. If both temp and dtemp are specified, the latter
is ignored. Ngspice improves SPICE’s resistors noise model, adding flicker noise (1/f) to
it and the noisy (or noise) keyword to simulate noiseless resistors. The thermal noise
in resistors is modeled according to the equation:

2= ——Af (3.5)

where ‘k’ is the Boltzmann’s constant, and ‘7" the instance temperature.

Flicker noise model is:

- KFI4F
2y = e A f (3.6)

inn WWFLLFfEF

A small list of sheet resistances (in ©/0) for conductors is shown below. The table repre-
sents typical values for MOS processes in the 0.5 - 1 um

range. The table is taken from: N. Weste, K. Eshraghian - Principles of CMOS VLSI
Design 2nd Edition, Addison Wesley.

Material ‘ Min. ‘ Typ. ‘ Max. ‘

Inter-metal (metall - metal2) | 0.005 | 0.007 | 0.1

Top-metal (metal3) 0.003 | 0.004 | 0.05
Polysilicon (poly) 15 20 30
Silicide 2 3 6

Diffusion (n+, p+) 10 25 100
Silicided diffusion 2 4 10

n-well 1000 | 2000 | 5000

78 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.4 Resistors, dependent on expressions (behavioral resistor)

General form:

RXXXXXXX n+ n- R = ’expression’ <tcl=value> <tc2=value> <noisy=0>

RXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value> <noisy=0>
Examples:

Rl rr 0 r = ’V(rr) < {Vvt} 7 {RO} : {2%RO}’ tcl=2e-03 tc2=3.3e-06

R2 r2 rr r = {6k + B50*TEMPER?}
.param rpl = 20
R3 nol no2 r = ’5k * rpl’ noisy=1

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. Tt may contain parameters (2.9.1) and the special variables time, temper,
and hertz (5.1.2). An example file is given below. Small signal noise in the resistor
(15.3.4) may be evaluated as white noise, depending on resistance, temperature and tcl,
tc2. To enable noise calculation, add the flag noisy=1 to the instance line. As a default
the behavioral resistor is noiseless.

Example input file for non-linear resistor:

Non-linear resistor

.param RO=1k Vi=1 Vt=0.5

* resistor depending on control voltage V(rr)
R1 rr 0 r = ’V(rr) < {vt} ? {RO} : {2xR0O}’
* control voltage

Vi rr 0 PWL(O O 100u {Vil})

.control

unset askquit

tran 100n 100u uic

plot i(V1)

.endc

.end

3.3.5 Resistor with nonlinear r2 cmc model

In the adms version of ngspice, a resistor model r2 cmc is implemented. This is a 2-
terminal resistor model developed by the resistor subcommittee of the CMC. The goal
was to have a standard 2-terminal resistor model with standard parameter names and
a standard, numerically well behaved nonlinearity model. It may be selected by setting
level=2 in the .model line.

For now a detailed description is available in the Verilog A source code file to be found a
src/spicelib/devices/adms/r2__cme/admsva/r2__cme.va.

3.3. ELEMENTARY DEVICES 79

Example input file for non-linear resistor with r2_ cmc model

r2 cmc

vi 1 0 10

Rr2_cmc 1 0 rmodel w=1lu 1=20u isnoisy=1

.model rmodel r(level=2 rsh=200 x1=0.2u xw=-0.05u

+ p3=0.12 q3=1.6 p2=0.015 g2=3.8 tcl=1.5e-4 tc2=T7e-7)
.control

op

let res = v(1) / -vi#branch

print res .endc

.end

3.3.6 Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <tcl=val> <tc2=val> <ic=init_condition>

Examples:

CBYP 13 0 1UF
C0SC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be specified
giving their capacitance or their geometrical and physical characteristics. Following the
original SPICE3 ‘convention’, capacitors specified by their geometrical or physical char-
acteristics are called ‘semiconductor capacitors’ and are described in the next section.

In this first form n+ and n- are the positive and negative element nodes, respectively and
value is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model
line, as in the example below:

Cl1 15 5 cstd
C2 2 7 cstd
.model cstd C cap=3n

Both capacitors have a capacitance of 3nF.

If you want to simulate temperature dependence of a capacitor, you need to specify its
temperature coefficients, using a .model line, like in the example below:

CEB 1 2 1u capl dtemp=5
.MODEL capl C tc1=0.001

80 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

The (optional) initial condition is the initial (time zero) value of capacitor voltage (in
Volts). Note that the initial conditions (if any) apply only if the uic option is specified
on the .tran control line.

Ngspice calculates the nominal capacitance as described below:

Crom = value - scale - m (3.7)

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence
(see equationl7.14) of the capacitance. If given in the instance line (the C... line) their
values will override the tc1l and tc2 of the .model line (3.3.8).

3.3.7 Semiconductor Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <l=length> <w=width> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <ic=init_condition>

Examples:

CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1u

This is the more general form of the Capacitor presented in section (3.3.6), and allows
for the calculation of the actual capacitance value from strictly geometric information
and the specifications of the process. If value is specified, it defines the capacitance and
both process and geometrical information are discarded. If value is not specified, the
capacitance is calculated from information contained model mname and the given length
and width (1, w keywords, respectively).

It is possible to specify mname only, without geometrical dimensions and set the capaci-
tance in the .model line (3.3.6).

3.3.8 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the
capacitance from strictly geometric information.

3.3. ELEMENTARY DEVICES 81

\ Name \ Parameter \ Units \ Default \ Example \
CAP model capacitance F 0.0 le-6
CJ junction bottom capacitance F/m? - 5e-5
CJSW junction sidewall capacitance Efm - 2e-11
DEFW default device width m le-6 2e-6
DEFL default device length m 0.0 le-6
\ NARROW \ narrowing due to side etching \ m \ 0.0 \ le-7 \
’ SHORT ‘ shortening due to side etching ‘ m ‘ 0.0 ‘ le-7 ‘
| TC1 | first order temperature coeff. | Flec | 0.0 | 0.001 |
’ TC2 \ second order temperature coeff. \ Ffoc2 \ 0.0 \ 0.0001 ‘
’ TNOM \ parameter measurement temperature \ °C \ 27 \ 50 ‘
] DI \ relative dielectric constant \ E/m \ - \ 1 ‘
’ THICK ‘ insulator thickness ‘ m ‘ 0.0 ‘ le-9 ‘
The capacitor has a capacitance computed as:
If value is specified on the instance line then
Crom = value - scale - m (3.8)
If model capacitance is specified then
Crom = CAP - scale - m (3.9)

If neither value nor CAP are specified, then geometrical and physical parameters are take
into account:

Cy = CJ(I — SHORT)(w — NARROW) + 2CJSW (I — SHORT + w — NARROW) (3.10)

CJ can be explicitly given on the .model line or calculated by physical parameters. When
CJ is not given, is calculated as:

If THICK is not zero:

CJ = T]I){IIEJK if DI is specified,

(3.11)

€S9 .
CJ = TI?IOCQK otherwise.

If the relative dielectric constant is not specified the one for SiO2 is used. The values
of the constants are ¢y = 8.854214871e — 12”5I and €g;0, = 3.4531479969¢ — 11%. The
nominal capacitance is then computed as:

Crom = Cy scalem (3.12)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

O(T) = C(TNOM) (1 4+ TCL (T — TNOM) + TCy(T — TNOM)2> (3.13)

82 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

where C(TNOM) = Com-

In the above formula, “T” represents the instance temperature, which can be explicitly set
using the temp keyword or calculated using the circuit temperature and dtemp, if present.

3.3.9 Capacitors, dependent on expressions (behavioral capaci-
tor)

There are two forms for behavioral capacitors allowed:

1. Capacitance formulated expressions C = ’expression’

2. Charge formulated expressions () = ’expression’

General form:

CXXXXXXX n+ n- C = ’expression’ <tcl=value> <tc2=value>

CXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value>

CXXXXXXX n+ n- Q = ’expression’ <tcl=value> <tc2=value>
Examples:

Cl cc 0 ¢ = ’V(cec) < {vt} 7 {C1} : {Ch}’ tcl=-1e-03 tc2=1.3e-05

Cl a b q = "lux(4xatan(V(a,b)/4)*2+V(a,b)) /3’

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and the special variables time, temper,
and hertz (5.1.2).

3.3. ELEMENTARY DEVICES 83

Example input file:

Behavioral Capacitor
.param Cl=b6n Ch=1n Vt=1m I1=100n

.ic v(cc) =0 v(cc2) =0
* capacitor depending on control voltage V(cc)
Cl cc 0 ¢c = ’V(cc) < {Vt} ? {Cl} : {Ch}’

I1 0 1 {11}

Exxx nl-copy n2 n2 cc2 1

Cxxx mnl-copy n2 1

Bxxx c¢cc2 n2 I = ’(V(cc2) < {Vt} 7 {C1l} : {Ch})’ = i(Exxx)
I2 n2 22 {Il1}

vn2 n2 0 DC O

* measure charge by integrating current
aintl %id(1 cc) 2 time count

aint2 %id (22 cc2) 3 time_count

.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1el12 out_upper_limit=1lel2
+ limit_range=1e-9 out_ic=0.0)

.control

unset askquit

tran 100n 100u

plot v (2)

plot v(cc) v(cc2)

.endc

.end

3.3.10 Inductors

General form:

LYYYYYYY n+ n- <value> <mname> <nt=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val>
+ <tc2=val> <ic=init condition>

Examples:

LLINK 42 69 1UH
LSHUNT 23 51 10U IC=15.7MA

The inductor device implemented into ngspice has many enhancements over the original
one.n+ and n- are the positive and negative element nodes, respectively. value is the
inductance in Henry. Inductance can be specified in the instance line as in the examples
above or in a .model line, as in the example below:

84 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

L1 15 5 indmodl
L2 2 7 indmodl
.model indmodl L ind=3n

Both inductors have an inductance of 3nH.

The nt is used in conjunction with a .model line, and is used to specify the number of
turns of the inductor. If you want to simulate temperature dependence of an inductor,
you need to specify its temperature coefficients, using a .model line, like in the example
below:

Lload 1 2 1u indl dtemp=5
.MODEL indl L tc1=0.001

The (optional) initial condition is the initial (time zero) value of inductor current (in
Amps) that flows from n+, through the inductor, to n-. Note that the initial conditions
(if any) apply only if the UIC option is specified on the .tran analysis line.

Ngspice calculates the nominal inductance as described below:

L. = value scale (3.14)
m

3.3.11 Inductor model

The inductor model contains physical and geometrical information that may be used to
compute the inductance of some common topologies like solenoids and toroids, wound in
air or other material with constant magnetic permeability.

’ Name \ Parameter \ Units \ Default \ Example ‘
IND model inductance H 0.0 le-3
CSECT cross section m? 0.0 le-3
LENGTH length m 0.0 le-2
TC1 first order temperature coeff. Hfoc 0.0 0.001
TC2 second order temperature coeff. Hfoc2 0.0 0.0001
TNOM | parameter measurement temperature | °C 27 50
NT number of turns - 0.0 10
MU relative magnetic permeability H/m, 0.0 -

The inductor has an inductance computed as:

If value is specified on the instance line then

L. = value scale (3.15)
m

If model inductance is specified then

IND scal
L, = —2 5% (3.16)
m

3.3. ELEMENTARY DEVICES 85

If neither value nor IND are specified, then geometrical and physical parameters are take
into account. In the following formulas

NT refers to both instance and model parameter (instance parameter overrides model
parameter):

If LENGTH is not zero:

LENGTH
L _ o NT? CSECT
nom LENGTH

{an — MUuNT*CSECT ¢] ig specified, (3.17)

otherwise.

with py = 1.25663706143592%[. After the nominal inductance is calculated, it is adjusted
for temperature by the formula

L(T) = L(TNOM) (1 +TCy(T — TNOM) + TCo(T — TNOM)2>, (3.18)

where L(TNOM) = L,,y,. In the above formula, ‘T” represents the instance tempera-
ture, which can be explicitly set using the temp keyword or calculated using the circuit
temperature and dtemp, if present.

3.3.12 Coupled (Mutual) Inductors

General form:
KXXXXXXX LYYYYYYY LZZZZ7Z7Z7Z7 value
Examples:

K43 LAA LBB 0.999
KXFRMR L1 L2 0.87

LYYYYYYY and LZZZ7Z777 are the names of the two coupled inductors, and value is
the coefficient of coupling, K, which must be greater than 0 and less than or equal to 1.
Using the ‘dot’ convention for drawing the coupled inductors, place a ‘dot” on the first
node of each inductor. If you have more than two inductors interacting, pairwise coupling
is supported.

Pairwise coupling of more than two inductors:

L1 1 0 10u
L2 2 0 11lu
L3 3 0 10u

K12 L1 L2 0.99
K23 L2 L3 0.99
K13 L1 L3 0.98

86 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

When there are more than two inductors coupled for interaction, some combination of
coupling constants are not possible physically because the magnetic fields then would
violate energy conservation. ngspice checks the coupling matrix for such conditions and
issues a warning.

3.3.13 Inductors, dependent on expressions (behavioral induc-
tor)

General form:

LXXXXXXX n+ n- L = ’expression’ <tcl=value> <tc2=value>
LXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value>

Examples:
L1 12 111 L = ’i(Vm) < {It} 7 {L1} : {Lh}’ tcl=-4e-03 tc2=6e-05

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and the special variables time, temper,
and hertz (5.1.2).

3.3. ELEMENTARY DEVICES 87

Example input file:

Variable inductor
.param L1=0.5m Lh=5m It=50u Vi=2m
.ic v(int21) = 0

* variable inductor depending on control current i(Vm)
L1 12 111 L = ’i(Vm) < {It} ? {L1} : {Lh}’

* measure current through inductor

vm 111 0 dc O

* voltage on inductor

Vi 12 0 {Vi}

* fixed inductor

L3 33 331 {L1}

* measure current through inductor
vm33 331 0 dc O

* voltage on inductor

V3 33 0 {Vi}

* non linear inductor (discrete setup)

F21 int21 0 B21 -1

L21 int21 0 1

B21 n1 n2 V = ’(i(Vm21) < {It} 7 {L1} : {Lh})’ * v(int21)
* measure current through inductor

vm21 n2 0 dc O

V21 n1 0 {Vi}

.control

unset askquit

tran 1lu 100u uic
plot i(Vm) i(vm33)
plot i(vm21) i(vm33)
plot i(vm)-i(vm21)
.endc

.end

3.3.14 Capacitor or inductor with initial conditions

The simulator supports the specification of voltage and current initial conditions on capac-
itor and inductor models, respectively. These models are not the standard ones supplied
with SPICES, but are in fact code models that can be substituted for the SPICE models
when realistic initial conditions are required. For details please refer to Chapter 12. A
XSPICE deck example using these models is shown below:

*
* This circuit contains a capacitor and an inductor with

88 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

* initial conditions on them. Each of the components

* has a parallel resistor so that an exponential decay

* of the initial condition occurs with a time constant of
* 1 second.

k3

al 1 0 cap

.model cap capacitor (c=1000uf ic=1)
rl 1 0 1k

*

a2 2 0 ind

.model ind inductor (1=1H ic=1)
r2 20 1.0

*

.control

tran 0.01 3

plot v(1) v(2)

.endc

.end

3.3.15 Switches

Two types of switches are available: a voltage controlled switch (type SXXXXXX, model
SW) and a current controlled switch (type WXXXXXXX, model CSW). A switching
hysteresis may be defined, as well as on- and off-resistances (0 < R < 00).

General form

SXXXXXXX N+ N- NC+ NC- MODEL <ON><OQOFF>
WYYYYYYY N+ N- VNAM MODEL <ON><QOFF>

Examples:

s1 1 2 3 4 switchl ON

s2 5 6 3 0 sm2 off

Switchl 1 2 10 0O smodell

wl 1 2 vclock switchmodl

W2 3 0 vramp sml ON

wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model
name is mandatory while the initial conditions are optional. For the voltage controlled
switch, nodes 3 and 4 are the positive and negative controlling nodes respectively. For
the current controlled switch, the controlling current is that through the specified voltage
source. The direction of positive controlling current flow is from the positive node, through
the source, to the negative node.

The instance parameters ON or OFF are required, when the controlling voltage (cur-
rent) starts inside the range of the hysteresis loop (different outputs during forward vs.

3.3. ELEMENTARY DEVICES 89

backward voltage or current ramp). Then ON or OFF determine the initial state of the
switch.

3.3.16 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in ngspice. The switch is
not quite ideal, in that the resistance can not change from 0 to infinity, but must always
have a finite positive value. By proper selection of the on and off resistances, they can
be effectively zero and infinity in comparison to other circuit elements. The parameters
available are shown below.

’ Name \ Parameter \ Units \ Default \ Switch model ‘
VT | threshold voltage \Y% 0.0 SW
IT threshold current A 0.0 CSW
VH | hysteresis voltage \Y 0.0 SW
[H hysteresis current A 0.0 CSW
RON on resistance Q 1.0 SW,CSW
ROFF off resistance Q 1.0e+12 (*) SW,CSW

(*) Or 1/GMIN, if you have set GMIN to any other value, see the .0PTIONS control
line (15.1.2) for a description of GMIN, its default value results in an off-resistance of
1.0e+12 ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large
discontinuities to occur in the circuit node voltages. A rapid change such as that associated
with a switch changing state can cause numerical round-off or tolerance problems leading
to erroneous results or time step difficulties. The user of switches can improve the situation
by taking the following steps:

o First, it is wise to set the ideal switch impedance just high or low enough to be
negligible with respect to other circuit elements. Using switch impedances that
are close to ‘ideal’ in all cases aggravates the problem of discontinuities mentioned
above. Of course, when modeling real devices such as MOSFETS, the on resistance
should be adjusted to a realistic level depending on the size of the device being
modeled.

o If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON
> le+12), then the tolerance on errors allowed during transient analysis should be
decreased by using the .0PTIONS control line and specifying TRTOL to be less than
the default value of 7.0.

o When switches are placed around capacitors, then the option CHGTOL should also
be reduced. Suggested values for these two options are 1.0 and le-16 respectively.
These changes inform ngspice to be more careful around the switch points so that
no errors are made due to the rapid change in the circuit.

90

CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example input file:

Switch test

.tran 2us b5ms

*switch control voltage
vli 1 0 DC 0.0 PWL(O O 2e-3 2 4e-3 0)

*switch control voltage starting inside hysteresis window
*please note influence of instance parameters ON, OFF

v2 2 0 DC 0.0 PWL(O 0.9 2e-3 2 4e-3 0.4)

*switch control current
i3 3 0 DC 0.0 PWL(0O O 2e-3 2m 4e-3 0) $ <--- switch control current
*load voltage
vd 4 0 DC 2.0
*input load for current source i3
r3 3 33 10k
vm3 33 0 dc 0 $§ <--- measure the current
* ouput load resistors

ri0 4 10 10k

r20 4 20 10k

r30 4 30 10k

r40 4 40 10k

%

sl 10 0 1 0 switchl OFF

s2 20 0 2 0 switchl OFF

s3 30 0 2 0 switchl ON

.model switchl sw vt=1 vh=0.2 ron=1 roff=10k

*

wl 40 0 vm3 wswitchl off

.model wswitchl csw

*

it=1m ih=0.2m ron=1 roff=10k

.control

run

plot v(1) v (10)

plot v(10) vs v(1) $ <-- get hysteresis loop

plot v(2) v(20) $§ <--- different initial values

plot v(20) vs v(2) $ <-- get hysteresis 1loop

plot v(2) v(30) $§ <--- different initial values

plot v(30) vs v(2) $§ <-- get hysteresis loop

plot v(40) vs vm3#branch $§ <--- current controlled switch hysteresi
.endc

.end

Chapter 4

Voltage and Current Sources

4.1 Independent Sources for Voltage or Current
General form:

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6

VIN 13 2 0.001 AC 1 SIN(O 1 1MEG)

ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)
VMEAS 12 9

VCARRIER 1 0 DISTOF1 0.1 -90.0

VMODULATOR 2 0 DISTOF2 0.01

IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

n+ and n- are the positive and negative nodes, respectively. Note that voltage sources
need not be grounded. Positive current is assumed to flow from the positive node, through
the source, to the negative node. A current source of positive value forces current to flow
out of the n+ node, through the source, and into the n- node. Voltage sources, in addition
to being used for circuit excitation, are the ‘ammeters’ for ngspice, that is, zero valued
voltage sources may be inserted into the circuit for the purpose of measuring current.
They of course have no effect on circuit operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is zero
both for dc and transient analyses, this value may be omitted. If the source value is
time-invariant (e.g., a power supply), then the value may optionally be preceded by the
letters DC.

The keyword AC together with its value ACMAG (and optional value ACPHASE) are required
when the voltage or current source is intended to become the small signal source in an

91

92 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

ac simulation. ACMAG is the ac magnitude and ACPHASE is the ac phase. The voltage or
current source then will become a reference for all nodes. All small signal node amplitude
values obtained after the simulation have been divided by the reference ACMAG. A typcal
ACMAG value thus may be unity. Any measured phase has been shifted by ACPHASE. If
ACPHASE is omitted, a value of zero is assumed. If the source is not an ac small-signal
input, the keyword AC and the ac values are to be avoided.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has
distortion inputs at the frequencies F1 and F2 respectively (see the description of the
.DISTO control line). The keywords may be followed by an optional magnitude and
phase. The default values of the magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis. If
a source is assigned a time-dependent value, the time-zero value is used for dc analysis.
There are nine independent source functions:

e pulse,

e exponential,

 sinusoidal,

e piece-wise linear,

o single-frequency FM

« AM

» transient noise

« random voltages or currents

 and external data (only with ngspice shared library).

If parameters other than source values are omitted or set to zero, the default values shown
are assumed. TSTEP is the printing increment and TSTOP is the final time — see the . TRAN
control line for an explanation.

4.1.1 Pulse

General form:
PULSE(V1 V2 TD TR TF PW PER PHASE)
Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS)

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 93
\ Name \ Parameter \ Default Value \ Units \
V1 Initial value - V, A
V2 Pulsed value - V, A
TD Delay time 0.0 sec
TR Rise time TSTEP sec
TF Fall time TSTEP sec
PW Pulse width TSTOP sec
PER Period TSTOP sec
PHASE Phase 0.0 degrees
A single pulse, without phase offset, is described by the following table:
’ Time \ Value ‘
0 V1
TD V1
TD+TR V2
TD+TR+PW V2
TD+TR+-PW4TF | V1
TSTOP V1
Intermediate points are determined by linear interpolation.
4.1.2 Sinusoidal
General form:
SIN(VO VA FREQ TD THETA PHASE)
Examples:
VIN 3 0 SIN(O 1 100MEG 1NS 1E10)
’ Name \ Parameter \ Default Value \ Units ‘
VO Offset - V, A
VA Amplitude - V, A
FREQ Frequency 1/rsTop Hz
TD Delay 0.0 sec
THETA | Damping factor 0.0 Usec
PHASE Phase 0.0 degrees
The shape of the waveform is described by the following formula:
ifo<t<TD

VO
V(t) =
(t) {VO + VAe WTDITHETAgiy (27 . FREQ - (t — TD) + PHASE) if TD <t < TSTOP.

(4.1)

94 CHAPTER 4. VOLTAGE AND CURRENT SOURCES
4.1.3 Exponential
General form:
EXP(V1 V2 TD1 TAU1 TD2 TAU2)
Examples:

VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

’ Name \ Parameter \ Default Value \ Units ‘
V1 Initial value - V, A
V2 pulsed value - V, A

TD1 rise delay time 0.0 sec
TAU1 | rise time constant TSTEP sec
TD2 fall delay time TD1+TSTEP | sec
TAU2 | fall time constant TSTEP sec

The shape of the waveform is described by the following formula:

Let V21 =V2-V1,V12=V1-V2:

V1 if 0<t<TDI,
V()= V1+Val(1—e maor if TD1 <t < TD2,
V14 V21 (1— e Faot) + V12 (1 _ e—(t%§522)> if TD2 < t < TSTOP.
(4.2)
4.1.4 Piece-Wise Linear
General form:
PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>) <r=value> <td=value>

Examples:

VCLOCK 7 5 PWL(0O -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)
+ r=0 td=15NS

Each pair of values (7}, V;) specifies that the value of the source is V; (in Volts or Amps)
at time = T;. The value of the source at intermediate values of time is determined by
using linear interpolation on the input values. The parameter r determines a repeat time
point. If r is set to -1 or is not given, the whole sequence of values (7}, V;) is issued once
only, then the output stays at its final value. If r = 0, the whole sequence from time 0 to
time Th is repeated forever. If r = 10ns, the sequence between 10ns and 50ns is repeated
forever. The r value has to be one of the time points T1 to Tn of the PWL sequence. If

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 95

td is given, the whole PWL sequence is delayed by the value of td. Please note that for
now r and td are available only with the voltage source, not with the current source.

4.1.5 Single-Frequency FM

General Form:
SFFM(VO VA FC MDI FS PHASEC PHASES)
Examples:

Vi 12 0 SFFM(0 1M 20K 5 1K)

\ Name \ Parameter \ Default value \ Units \
VO Offset - V, A
VA Amplitude - V,A
FC Carrier frequency Yrsrop Hz
MDI Modulation index -
FS Signal frequency 1/rsrop Hz
PHASEC carrier phase 0 degrees
PHASES signal phase 0 degrees

The shape of the waveform is described by the following equation:

V(t)=Vo+ Vasin(2r- FC -t+ MDI sin(2r - FS-t+ PHASES)+ PHASEC)
(4.3)

4.1.6 Amplitude modulated source (AM)

General form:
AM(VA VO MF FC TD PHASES)
Examples:

Vi 12 0 AM(0.5 1 20K 5MEG 1m)

’ Name \ Parameter \ Default value \ Units ‘
VA Amplitude - V, A
VO Offset - V, A
MF Modulating frequency - Hz
FC Carrier frequency Yrsrop Hz
TD Signal delay - S

PHASES Phase 0.0 degrees

96 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

The shape of the waveform is described by the following equation:

V(t) = Va (VO +sin(2n- MF -t) + PHASES)sin (21 - FC -t + PHASES) (4.4)

4.1.7 Transient noise source

General form:
TRNOISE(NA NT NALPHA NAMP RTSAM RTSCAPT RTSEMT)
Examples:

VNoiw 1 0 DC O TRNOISE(20n 0.5n O 0) $ white
VNoilof 1 0 DC O TRNOISE(O 10p 1.1 12p) $ 1/f
VNoiwlof 1 O DC O TRNOISE(20 10p 1.1 12p) $ white and 1/f
IALL 10 O DC O trnoise(im 1u 1.0 O0.1m 15m 22u 50u)
$ white, 1/f, RTS

Transient noise is an experimental feature allowing (low frequency) transient noise injec-
tion and analysis. See Chapt. 15.3.10 for a detailed description. NA is the Gaussian noise
rms voltage amplitude, NT is the time between sample values (breakpoints will be en-
forced on multiples of this value). NALPHA (exponent to the frequency dependency), NAMP
(rms voltage or current amplitude) are the parameters for 1/f noise, RTSAM the random
telegraph signal amplitude, RTSCAPT the mean of the exponential distribution of the trap
capture time, and RTSEMT its emission time mean. White Gaussian, 1/f, and RTS noise
may be combined into a single statement.

\ Name \ Parameter \ Default value \ Units \

NA Rms noise amplitude (Gaussian) - V, A

NT Time step - sec
NALPHA 1/f exponent 0<a<?2 -

NAMP Amplitude (1/f) - V, A

RTSAM Amplitude - V, A

RTSCAPT Trap capture time - sec

RTSEMT Trap emission time - sec

If you set NT and RTSAM to 0, the noise option TRNOISE ... is ignored. Thus you may
switch off the noise contribution of an individual voltage source VNOI by the command

alter @vnoi[trnoise] = [00 0 0] $ no noise
alter Q@vrts[trnoise] = [00 0 0 0 0 O] $ no noise
See Chapt. 17.5.3 for the alter command.

You may switch off all TRNOISE noise sources by setting
set notrnoise

to your .spiceinit file (for all your simulations) or into your control section in front of the
next run or tran command (for this specific and all following simulations). The command

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 97

unset notrnoise
will reinstate all noise sources.

The noise generators are implemented into the independent voltage (vsrc) and current
(isrc) sources.

4.1.8 Random voltage source

The TRRANDOM option yields statistically distributed voltage values, derived from the
ngspice random number generator. These values may be used in the transient simula-
tion directly within a circuit, e.g. for generating a specific noise voltage, but especially
they may be used in the control of behavioral sources (B, E, G sources 5, voltage control-
lable A sources 12, capacitors 3.3.9, inductors 3.3.13, or resistors 3.3.4) to simulate the
circuit dependence on statistically varying device parameters. A Monte-Carlo simulation
may thus be handled in a single simulation run.

General form:

TRRANDOM(TYPE TS <TD <PARAM1 <PARAM2>>>)
Examples:

VR1 r1 O dc O trrandom (2 10m O 1) $ Gaussian

TYPE determines the random variates generated: 1 is uniformly distributed, 2 Gaussian,
3 exponential, 4 Poisson. TS is the duration of an individual voltage value. TD is a time
delay with 0 V output before the random voltage values start up. PARAM1 and PARAM2
depend on the type selected.

’ TYPE ‘ description ‘ ‘ PARAMI1 ‘ default ‘ ‘ PARAM2 ‘ default ‘
1 Uniform Range 1 Offset 0
2 Gaussian Standard Dev. 1 Mean 0
3 Exponential Mean 1 Offset 0
4 Poisson Lambda 1 Offset 0

4.1.9 External voltage or current input

General form:
EXTERNAL
Examples:

Vex 1 0 dc 0 external
Iex i1 i2 dc 0 extermnal <m = xx>

Voltages or currents may be set from the calling process, if ngspice is compiled as a shared
library and loaded by the process. See Chapt. 19.6.3 for an explanation.

98 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.1.10 Arbitrary Phase Sources

ngspice supports arbitrary phase independent sources that output at TIME=0.0 a value
corresponding to some specified phase shift. Other versions of SPICE use the TD (delay
time) parameter to set phase-shifted sources to their time-zero value until the delay time
has elapsed. The ngspice phase parameter is specified in degrees and is included after the
SPICE3 parameters normally used to specify an independent source. Partial examples of
usage for pulse and sine waveforms are shown below:

* Phase shift is specified as final parameter

* on the independent source cards. Phase shift for both of the
* following is specified as +45 degrees
*

vli 10 0.0 sin(0 1 1k 0 0 45.0)
rl1 10 1k

*

0.0 pulse(-1 1 0 le-5 le-5 be-4 1le-3 45.0)
1k

<

220
220

* B

4.2 Linear Dependent Sources

Ngspice allows circuits to contain linear dependent sources characterized by any of the
four equations

’i:gv‘v:ev‘i:fi‘v:hi‘

where g, e, f, and h are constants representing transconductance, voltage gain, current
gain, and transresistance, respectively. Non-linear dependent sources for voltages or cur-
rents (B, E, G) are described in Chapt. 5.

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)

General form:
GXXXXXXX N+ N- NC+ NC- VALUE <m=val>
Examples:

G1 2 05 0 0.1

n+ and n- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative

node. nc+ and nc- are the positive and negative controlling nodes, respectively. value
is the transconductance (in mhos). m is an optional multiplier to the output current. val
may be a numerical value or an expression according to 2.9.5 containing references to
other parameters. Instance parameters are listed in chapt. 31.3.6.

4.2. LINEAR DEPENDENT SOURCES 99

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)

General form:
EXXXXXXX N+ N- NC+ NC- VALUE
Examples:

El1 2 3 14 1 2.0

n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and
negative controlling nodes, respectively. value is the voltage gain. Instance parameters
are listed in chapt. 31.3.7.

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)

General form:
FXXXXXXX N+ N- VNAM VALUE <m=val>
Examples:

F1 13 5 VSENS 5 m=2

n+ and n- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. vnam is the name of a voltage
source through which the controlling current flows. The direction of positive controlling
current flow is from the positive node, through the source, to the negative node of vnam.
value is the current gain. m is an optional multiplier to the output current. Instance
parameters are listed in chapt. 31.3.4.

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)

General form:
HXXXXXXX N+ N- VNAM VALUE
Examples:

HX 5 17 VZ 0.5K

n+ and n- are the positive and negative nodes, respectively. vnam is the name of a voltage
source through which the controlling current flows. The direction of positive controlling
current flow is from the positive node, through the source, to the negative node of vnam.
value is the transresistance (in ohms). Instance parameters are listed in chapt. 31.3.5.

100 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.2.5 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 are fully supported in ngspice using
the XSPICE extension (25.1). The form used to specify these sources is shown in Table
4.1. For details on its usage please see Chapt. 5.5.

Dependent Polynomial Sources

Source Type \ Instance Card

POLYNOMIAL VCVS | EXXXXXXX N+ N- POLY(ND) NC1+ NC1- PO (P1...)

D)
POLYNOMIAL VCCS | GXXXXXXX N+ N- POLY(ND) NCI+ NCI- P0 (P1...)
POLYNOMIAL CCCS | FXXXXXXX N+ N- POLY(ND) VNAMI IVNAM2...? PO (P1...)

POLYNOMIAL CCVS | HXXXXXXX N+ N- POLY(ND) VNAM1 IVNAM2...? PO (P1...)

Table 4.1: Dependent Polynomial Sources

Chapter 5

Non-linear Dependent Sources
(Behavioral Sources)

The non-linear dependent sources B (see Chapt. 5.1), E (see 5.2), G see (5.3) described
in this chapter allow the generation of voltages or currents that result from evaluating a
mathematical expression. Internally E and G sources are converted to the more general
B source. All three sources may be used to introduce behavioral modeling and analysis.

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntax and usage

General form:

BXXXXXXX n+ n- <i=expr> <v=expr> <tcl=value> <tc2=value>
+ <temp=value> <dtemp=value>

Examples:
Bl 0 1 I=cos(v(1))+sin(v(2))
B2 0 1 V=1n(cos(log(v(1,2)72)))-v(3)~4+v(2) v (1)
B3 3 4 I=17
B4 3 4 V=exp(pi~i(vdd))
B5 2 0 V= V(1) < {Vliow} ? {Vliow}
+ V(1) > {Vhigh} ? {Vhigh} : V(1)

n+ is the positive node, and n- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is
given then the device is a current source, and if V is given the device is a voltage source.
One and only one of these parameters must be given. All instance parameters are listed
in chapter 31.3.1.

A simple model is implemented for temperature behavior by the formula:

101

102CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

I(T) = I(TNOM) (1 + TCy(T — TNOM) + TCy(T — TNOM)2> (5.1)

or

V(T) = V(TNOM) (1 + TCH(T — TNOM) + TCy(T — TNOM)2> (5.2)

In the above formula, “T” represents the instance temperature, which can be explicitly set
using the temp keyword or calculated using the circuit temperature and dtemp, if present.
If both temp and dtemp are specified, the latter is ignored.

The small-signal AC behavior of the nonlinear source is a linear dependent source (or
sources) with a proportionality constant equal to the derivative (or derivatives) of the
source at the DC operating point. The expressions given for V and I may be any function
of voltages and currents through voltage sources in the system.

The following functions of a single real variable are defined:

Trigonometric functions: cos, sin, tan, acos, asin, atan
Hyperbolic functions: cosh, sinh, acosh, asinh, atanh

Exponential and logarithmic: exp, In, log, logl0 (In, log with base e, logl0 with base
10)

Other: abs, sqrt, u, u2, uramp, floor, ceil, i
Functions of two variables are min, max, pow, **, pwr, ~

Functions of three variables are a 7 b:c

For convergence reasons the ‘exp’ function has a limit of 14 for its argument, beyond that
value it will increase linearily. The function ‘u’ is the unit step function, with a value
of one for arguments greater than zero, a value of 0.5 at zero, and a value of zero for
arguments less than zero. The function ‘u2’ returns a value of zero for arguments less
than zero, one for arguments greater than one and assumes the value of the argument
between these limits. The function ‘uramp’ is the integral of the unit step: for an input x,
the value is zero if x is less than zero, or, if x is greater than or equal to zero, the value is
x. These three functions are useful in synthesizing piece-wise non-linear functions, though
convergence may be adversely affected.

The function i(xyz) returns the current through the first node of device instance xyz.
The following standard operators are defined: +, -, *, /, =, unary -
Logical operators are !'=, <> >= <= == > < ||, &&, !

A ternary function is defined asa ? b : ¢, which means IF a, THEN b, ELSE c. Be
sure to place a space in front of ‘?’ to allow the parser distinguishing it from other tokens.

The B source functions pow, **, =, and pwr need some special care to avoid undefined
regions in x1, as they differ from the common mathematical usage (and from the functions
depicted in chapt. 2.9.5).

The functions y = pow(x1,x2), x1**x2, and x1°x2 , all of them describing y = 2172
resolve to the following:

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 103

y = pow(fabs(x1l), x2)

pow in the preceding line is the standard C math library function.

The function y = pwr(x1,x2) resolves to

if (x1 < 0.0)

y = (-pow(-x1, x2));
else

y = (pow(xl, x2));

pow here again is the standard C math library function.

Example: Ternary function

* B source test Clamped voltage source

* C. P. Basso "Switched-mode power supplies", New York, 2008
.param Vhigh = 4.6

.param Vlow = 0.4

Vinl 1 0 DC O PWL(O O 1u 5)

Bcl 2 0 V= V(1) < Vliow 7 Vliow : V(1) > Vhigh ? Vhigh : V(1)
.control

unset askquit

tran b5n 1u

plot V(2) vs V(1)

.endc

.end

If the argument of log, In, or sqrt becomes less than zero, the absolute value of the
argument is used. If a divisor becomes zero or the argument of log or In becomes zero,
an error will result. Other problems may occur when the argument for a function in a
partial derivative enters a region where that function is undefined.

Parameters may be used like {Vlow} shown in the example above. Parameters will be
evaluated upon set up of the circuit, vectors like V(1) will be evaluated during the simu-
lation.

To get time into the expression you can integrate the current from a constant current
source with a capacitor and use the resulting voltage (don’t forget to set the initial voltage
across the capacitor).

Non-linear resistors, capacitors, and inductors may be synthesized with the nonlinear de-
pendent source. Nonlinear resistors, capacitors and inductors are implemented with their
linear counterparts by a change of variables implemented with the nonlinear dependent
source. The following subcircuit will implement a nonlinear capacitor:

104CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example: Non linear capacitor

.3ubckt nlcap pos neg

* Bx: calculate f(input voltage)

Bx 1 0 v = f(v(pos,neg))

* Cx: linear capacitance

Cx 2 01

* Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC OVolts

* Drive the current through Cx back into the circuit
Fx pos neg Vx 1

.ends

Example for f(v(pos,neg)):

Bx 1 0 V = v(pos,neg)*v(pos,neg)

Non-linear resistors or inductors may be described in a similar manner. An example for
a nonlinear resistor using this template is shown below.

Example: Non linear resistor

* use of ’hertz’ variable in nonlinear resistor
* . param rbase=1k
* some tests

Bl 1 0 V = hertzxv(33)
B2 2 0 V = v(33)xhertz
b3 3 0 V = 6.283e3/(hertz+6.283e3)*v(33)

Vi 33 0 DC 0 AC 1

x*x Translate R1 10 0 R=’1k/sqrt (HERTZ)’ to B source *x*x
.Subckt nlres pos neg rb=rbase

* Bx: calculate f(input voltage)

Bx 1 0 v = -1 / {rb} / sqrt(HERTZ) * v(pos, neg)
* Rx: linear resistance

Rx 2 0 1

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 105

Example: Non linear resistor (continued)

* Vx: Ammeter to measure current into the resistor
Vx 2 1 DC OVolts

* Drive the current through Rx back into the circuit
Fx pos neg Vx 1

.ends

Xres 33 10 nlres rb=1k

*Rres 33 10 1k

Vres 10 0 DC O

.control

define check(a,b) vecmax(abs(a - b))

ac lin 10 100 1k

* some checks

print v (1) v(2) v(3)

if check(v(1l), frequency) < le-12

echo "INFO: ok"

end

plot vres#branch

.endc

.end

5.1.2 Special B-Source Variables time, temper, hertz

The special variables time and temper are available in a transient analysis, reflecting the
actual simulation time and circuit temperature. temper returns the circuit temperature,
given in degree C (see 2.12). The variable hertz is available in an AC analysis. time
is zero in the AC analysis, hertz is zero during transient analysis. Using the variable
hertz may cost some CPU time if you have a large circuit, because for each frequency
the operating point has to be determined before calculating the AC response.

5.1.3 par(’ezpression’)
The B source syntax may also be used in output lines like .plot as algebraic expressions
for output (see Chapt.15.6.6).

5.1.4 Piecewise Linear Function: pwl

Both B source types may contain a piece-wise linear dependency of one network variable:

Example: pwl_current

Bdio 1 0 I = pwl(v(A), 0,0, 33,10m, 100,33m, 200,50m)

v(A) is the independent variable x. Each pair of values following describes the x,y func-
tional relation: In this example at node A voltage of 0V the current of 0A is generated -
next pair gives 10mA flowing from ground to node 1 at 33V on node A and so forth.

106CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

The same is possible for voltage sources:

Example: pwl_voltage

Blimit b 0 V = pwl(v(l), -4,0, -2,2, 2,4, 4,5, 6,5)

Monotony of the independent variable in the pwl definition is checked - non-monotonic
x entries will stop the program execution. v(1) may be replaced by a controlling current
source. v(1) may also be replaced by an expression, e.g. —2 i(V;,). The value pairs may
also be parameters, and have to be predefined by a .param statement. An example for
the pwl function using all of these options is shown below.

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 107

Example: pwl function in B source

Demonstrates usage of the pwl function in an B source (ASRC)
* Also emulates the TABLE function with limits

.param x0=-4 y0=0
.param x1=-2 yl1=2
.param x2=2 y2=-2
.param x3=4 y3=1
.param xx0=x0-1
.param xx3=x3+1

Vin 10 DC=0V
R 10 2

* no limits outside of the tabulated x values
* (continues linearily)
Btest2 2 0 I = pwl(v(1l),’x0’,’y0’,’x1’,’y1’,°x2’,°y2’,°x37,°y3’)

* like TABLE function with limits:

Btest3 3 0 I = (v(1) < ’x0°) 7 ’y0°

(v(1) < ’x37) 7

+ pwl(v(1l),’x0’,’y0’,’x1?,°y1°,°x2° ,°y2’ ,°x3’,°y3’) : ’y3’

* more efficient and elegant TABLE function with limits
*(voltage controlled):
Btest4 4 0 I = pwl(v(l),

+ ’xx0’,’y0’, ’x0’,’y0’,

+ ’x17,’°y17,

+ ’x27,°y27,

+ ’x37,’°y37, ’xx3’,’y37)

*

* more efficient and elegant TABLE function with limits
* (controlled by current):

Btest5 5 0 I = pwl(-2%i(Vin),

+ ’xx0’,’y0’, ’x0’,’y0’,

+ 'x17,7y17,

+ 'x27,7y27,

+ 'x37,’y3’, ’xx3’,’y37)
Rint2 2 0 1

Rint3 3 0 1

Rint4 4 0 1

Rint5 5 0 1

.control

dc Vin -6 6 0.2
plot v(2) v(3) v(4)-0.5 v(5)+0.5
.endc

.end

108CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

5.2 Exxxx: non-linear voltage source

5.2.1 VOL

General form:
EXXXXXXX n+ n- vol=’expr’
Examples:

E41 4 0 vol = ’V(3)*V(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and the special variables time, temper,
hertz (5.1.2). > or { } may be used to delimit the function.

5.2.2 VALUE

Optional syntax:

EXXXXXXX n+ n- value={expr}
Examples:

E41 4 0 value = {V(3)*V(3)-0ffs}

The "=’ sign is optional.

5.2.3 TABLE

Data may be entered from the listings of a data table similar to the pwl B-Source (5.1.4).
Data are grouped into x, y pairs. Expression may be an equation or an expression
containing node voltages or branch currents (in the form of i(vm)) and any other terms
as given for the B source and described in Chapt. 5.1. It may contain parameters (2.9.1).
> or { } may be used to delimit the function. Expression delivers the x-value, which
is used to generate a corresponding y-value according to the tabulated value pairs, using
linear interpolation. If the x-value is below x0 , y0 is returned, above x2 y2 is returned
(limiting function). The value pairs have to be real numbers, parameters are not allowed.

5.2. EXXXX: NON-LINEAR VOLTAGE SOURCE 109

Syntax for data entry from table:

Exxx nl n2 TABLE {expression} = (x0, y0) (x1, y1) (x2, y2)
Example (simple comparator):

ECMP 11 0 TABLE {Vv(10,9)} = (-5mV, OV) (5mV, 5V)

An ’=’ sign may follow the keyword TABLE.

5.2.4 POLY

see E-Source at Chapt. 5.5.

5.2.5 LAPLACE

Currently ngspice does not offer a direct E-Source element with the LAPLACE option.
There is however a XSPICE code model equivalent called s_ xfer (see Chapt. 12.2.17),
which you may invoke manually. The XSPICE option has to be enabled (32.1). AC
(15.3.1) and transient analysis (15.3.9) is supported.

The following E-Source:

ELOPASS 4 0 LAPLACE {Vv(1)}
+ {56 x (s/100 + 1) / (8°2/42000 + s/60 + 1)}

may be replaced by:

AELOPASS 1 int_4 filterl
.model filterl s_xfer(gain=5

+ num_coeff=[{1/100} 1]
+ den _coeff=[{1/42000} {1/60} 1]
+ int_ic=[0 0])

ELOPASS 4 0 int_4 0 1

where you have the voltage of node 1 as input, an intermediate output node int_ 4 and an
E-source as buffer to keep the name ‘ELOPASS’ available if further processing is required.

If the controlling expression is more complex than just a voltage node, you may add a
B-Source (5.1) for evaluating the expression before entering the A-device.

110CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

E-Source with complex controlling expression:
ELOPASS 4 0 LAPLACE {v(1)xv(2)} {10 / (s/6800 + 1)}
may be replaced by:

BELOPASS int_1 0 V=V (1)*v(2)
AELOPASS int_1 int_4 filterl
.model filterl s_xfer(gain=10

+ num_coeff=[1]
+ den_coeff=[{1/6800} 1]
+ int_ic=[0])

ELOPASS 4 0 int_4 0 1

5.3 Gxxxx: non-linear current source

5.3.1 CUR

General form:
GXXXXXXX n+ n- cur=’expr’ <m=val>
Examples:

G51 55 225 cur = ’V(3)*xV(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and special variables (5.1.2). m is an
optional multiplier to the output current. val may be a numerical value or an expression
according to 2.9.5 containing only references to other parameters (no node voltages or
branch currents!), because it is evaluated before the simulation commences.

5.3.2 VALUE

Optional syntax:
GXXXXXXX n+ n- value=’expr’ <m=val>
Examples:

G51 55 225 value = ’V(3)*V(3)-0ffs”’

The "=’ sign is optional.

5.3. GXXXX: NON-LINEAR CURRENT SOURCE 111

5.3.3 TABLE

A data entry by a tabulated listing is available with syntax similar to the E-Source (see
Chapt. 5.2.3).

Syntax for data entry from table:

Gxxx nl n2 TABLE <{expression} =
+ (x0, y0) (x1, y1) (x2, y2) <m=val>

Example (simple comparator with current output and voltage control):

GCMP 0 11 TABLE {v(10,9)} = (-5MvV, OV) (5MV, 5V)
R 11 0 1k

m is an optional multiplier to the output current. val may be a numerical value or an
expression according to 2.9.5 containing only references to other parameters (no node
voltages or branch currents!), because it is evaluated before the simulation commences.
An '=’ sign may follow the keyword TABLE.

5.3.4 POLY

see E-Source at Chapt. 5.5.

5.3.5 LAPLACE

See E-Source, Chapt. 5.2.5 , for an equivalent code model replacement.

5.3.6 Example

An example file is given below.

112CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example input file:

VCCS, VCVS, non-linear dependency
.param Vi=1

.param Offs=’0.01%Vi’

* VCCS depending on V(3)

B21 intl 0 V = V(3)*V(3)

Gl 21 22 intl1l 0 1

* measure current through VCCS

vm 22 0 dc O

R21 21 0 1
* new VCCS depending on V(3)
G51 55 225 cur = ’V(3)*V(3)-0ffs”’

* measure current through VCCS
vmb 225 0 dc O

R51 55 0 1

* VCVS depending on V(3)

B31 int2 0 V = V(3)*V(3)

E1 1 0 int2 0 1

R1 1 0 1

* new VCVS depending on V(3)
E41 4 0 vol = ’V(3)%*V(3)-0ffs”’
R4 4 0 1

* control voltage

Vi 3 0 PWL(O 0 100u {Vi})
.control

unset askquit

tran 10n 100u uic

plot i(E1) i(E41)

plot i(vm) i(vmb)

.endc

.end

5.4 Debugging a behavioral source

The B, E, G, sources and the behavioral R, C, L elements are powerful tools to set up
user defined models. Unfortunately debugging these models is not very comfortable.

5.5. POLY SOURCES 113

Example input file with bug (log(-2)):

B source debugging

E41 4 0 vol = ’V(1)*log(V(2))”’

.control
tran 1 1
.endc

.end

The input file given above results in an error message:
Error: -2 out of range for log

In this trivial example, the reason and location for the bug is obvious. However, if you have
several equations using behavioral sources, and several occurrences of the log function,
then debugging is nearly impossible.

However, if the variable ngdebug (see 17.7) is set (e.g. in file .spiceinit), a more distinctive
error message is issued that (after some closer investigation) will reveal the location and
value of the buggy parameter.

Detailed error message for input file with bug (log(-2)):

Error: -2 out of range for log
calling PTeval, tree =
(v0) * (log (v1))
d / d v0 : log (vl)
d / d vl : (v0) * ((0.434294) / (v1))
values: var0 = 1
varl = -2

If variable strict_errorhandling (see 17.7) is set, ngspice exits after this message. If
not, gmin and source stepping may be started, typically without success.

5.5 POLY Sources

Polynomial sources are only available when the XSPICE option (see Chapt. 32) is enabled.

114CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

5.5.1 E voltage source, G current source

General form:
EXXXX N+ N- POLY(ND) NC1+ NC1- (NC2+ NC2-...) PO (P1...)
Example:

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
POLY(ND) Specifies the number of dimensions of the polynomial. The number of pairs
of controlling nodes must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through
the source to the (-) node.

The <NC1+> and <NC1-> are in pairs and define a set of controlling voltages. A particular
node can appear more than once, and the output and controlling nodes need not be
different.

The example yields a voltage output controlled by two input voltages v(3,0) and v(4,0).
Four polynomial coefficients are given. The equivalent function to generate the output is:

0+ 13.6 * v(3) + 0.2 x v(4) + 0.005 * v(3) * v(3)
Generally you will set the equation according to

POLY(1) y
POLY(2) y

pO + plxX1 + p2*X1xX1 + p3xX1xX1*X1 + ...

pO + plxX1 + p2*X2 +

p3*X1*X1 + p4*xX2xX1 + pb*X2xX2 +
p6*X1xX1xX1 + p7+X2*X1xX1 + p8*X2xX2*X1 +
pO*X2¥X2xX2 + ...

pl*X1 + p2*X2 + p3*X3 +

p4*X1*X1 + p5*X2%X1 + p6*X3*X1 +

p7*X2*%X2 + p8xX2*X3 + p9*X3*X3 + ...

POLY(3) y

I
o}
o

+
+
+
+
+
+

where X1 is the voltage difference of the first input node pair, X2 of the second pair and
so on. Keeping track of all polynomial coefficient is rather tedious for large polynomials.

5.5.2 F voltage source, H current source
General form:

FXXXX N+ N- POLY(ND) Vi (V2 V3 ...) PO (P1...)
Example:

FNONLIN 100 101 POLY(2) VDD Vxx 0 0.0 13.6 0.2 0.005

5.5. POLY SOURCES 115

POLY(ND) Specifies the number of dimensions of the polynomial. The number of con-
trolling sources must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (4) node through
the source to the (-) node.

V1 (V2 V3 ...) are the controlling voltage sources. Control variable is the current through
these sources.

PO (P1...) are the coefficients, as have been described in 5.5.1.

116CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Chapter 6

Transmission Lines

Ngspice implements both the original SPICE3f5 transmission lines models and the one
introduced with KSPICE. The latter provide an improved transient analysis of lossy
transmission lines. Unlike SPICE models that use the state-based approach to simulate
lossy transmission lines, KSPICE simulates lossy transmission lines and coupled multi-
conductor line systems using the recursive convolution method. The impulse response
of an arbitrary transfer function can be determined by deriving a recursive convolution
from the Pade approximations of the function. We use this approach for simulating each
transmission line’s characteristics and each multiconductor line’s modal functions. This
method of lossy transmission line simulation has been proved to give a speedup of one to
two orders of magnitude over SPICE3{f5.

6.1 Lossless Transmission Lines

General form:

TXXXXXXX N1 N2 N3 N4 ZO0=VALUE <TD=VALUE>
+ <F=FREQ <NL=NRMLEN>> <IC=V1, I1, V2, I2>

Examples:

T1 1 0 2 0 Z0=50 TD=10NS

nl and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. z0 is the char-
acteristic impedance. The length of the line may be expressed in either of two forms.
The transmission delay, td, may be specified directly (as td=10ns, for example). Alterna-
tively, a frequency £ may be given, together with nl, the normalized electrical length of
the transmission line with respect to the wavelength in the line at the frequency ‘t". If a
frequency is specified but nl is omitted, 0.25 is assumed (that is, the frequency is assumed
to be the quarter-wave frequency). Note that although both forms for expressing the line
length are indicated as optional, one of the two must be specified.

Note that this element models only one propagating mode. If all four nodes are distinct
in the actual circuit, then two modes may be excited. To simulate such a situation,

117

118 CHAPTER 6. TRANSMISSION LINES

two transmission-line elements are required. (see the example in Chapt. 21.7 for further
clarification.) The (optional) initial condition specification consists of the voltage and
current at each of the transmission line ports. Note that the initial conditions (if any)
apply only if the UIC option is specified on the .TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than
the lossless transmission line due to implementation details.

6.2 Lossy Transmission Lines

General form:
OXXXXXXX nl n2 n3 n4d mname
Examples:

023 1 0 2 0 LOSSYMOD
OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single conductor lossy transmission lines. n1
and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. Note that a lossy
transmission line with zero loss may be more accurate than the lossless transmission line
due to implementation details.

6.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model
henceforth) models a uniform constant-parameter distributed transmission line. The RC
and LC cases may also be modeled using the URC and TRA models; however, the newer
LTRA model is usually faster and more accurate than the others. The operation of the
LTRA model is based on the convolution of the transmission line’s impulse responses with
its inputs (see [8]). The LTRA model takes a number of parameters, some of which must
be given and some of which are optional.

6.2. LOSSY TRANSMISSION LINES

119

\ Name Parameter \ Units/Type \ Default \ Example \
R resistance/length /umit 0.0 0.2
L inductance/length H [unit 0.0 9.13e-9
G conductance/length mhos [yt 0.0 0.0
C capacitance/length F funit 0.0 3.65e-12
LEN length of line unit no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control 1 5
NOSTEPLIMIT don’t limit time-step to less flag not set set
than line delay
NO CONTROL don’t do complex time-step flag not set set
control
LININTERP use linear interpolation flag not set set
MIXEDINTERP use linear when quadratic flag not set set
seems bad
COMPACTREL special reltol for history RELTOL 1.0e-3
compaction
COMPACTABS special abstol for history ABSTOL 1.0e-9
compaction
TRUNCNR use Newton-Raphson flag not set set
method for time-step
control
TRUNCDONTCUT don’t limit time-step to flag not set set
keep impulse-response
errors low

The following types of lines have been implemented so far:

o RLC (uniform transmission line with series loss only),
e RC (uniform RC line),
o LC (lossless transmission line),

« RG (distributed series resistance and parallel conductance only).

Any other combination will yield erroneous results and should not be tried. The length
LEN of the line must be specified. NOSTEPLIMIT is a flag that will remove the default
restriction of limiting time-steps to less than the line delay in the RLC case. NO CONTROL
is a flag that prevents the default limiting of the time-step based on convolution error
criteria in the RLC and RC cases. This speeds up simulation but may in some cases
reduce the accuracy of results. LININTERP is a flag that, when specified, will use linear
interpolation instead of the default quadratic interpolation for calculating delayed signals.
MIXEDINTERP is a flag that, when specified, uses a metric for judging whether quadratic
interpolation is not applicable and if so uses linear interpolation; otherwise it uses the de-
fault quadratic interpolation. TRUNCDONTCUT is a flag that removes the default cutting of
the time-step to limit errors in the actual calculation of impulse-response related quanti-
ties. COMPACTREL and COMPACTABS are quantities that control the compaction of the past
history of values stored for convolution. Larger values of these lower accuracy but usually

120 CHAPTER 6. TRANSMISSION LINES

increase simulation speed. These are to be used with the TRYTOCOMPACT option, described
in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-Raphson it-
erations to determine an appropriate time-step in the time-step control routines. The
default is a trial and error procedure by cutting the previous time-step in half. REL and
ABS are quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL.
The default value of 1 is usually safe from the point of view of accuracy but occasionally
increases computation time. A value greater than 2 eliminates all breakpoints and may
be worth trying depending on the nature of the rest of the circuit, keeping in mind that
it might not be safe from the viewpoint of accuracy.

Breakpoints may usually be entirely eliminated if it is expected the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required but may be used
for setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified
in a .0PTIONS card. The legal range is between 0 and 1. Larger values usually decrease
the accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not
specified on a .0PTIONS card, history compaction is not attempted and accuracy is high.

NO CONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense
of accuracy.

6.3 Uniform Distributed RC Lines

General form:
UXXXXXXX nl n2 n3 mname l=len <n=lumps>
Examples:

Ul 1 2 0 URCMOD L=50U
URC2 1 12 2 UMODL 1=1MIL N=6

nl and n2 are the two element nodes the RC line connects, while n3 is the node the
capacitances are connected to. mname is the model name, len is the length of the RC line
in meters. lumps, if specified, is the number of lumped segments to use in modeling the
RC line (see the model description for the action taken if this parameter is omitted).

6.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberg in 1974. The model
is accomplished by a subcircuit type expansion of the URC line into a network of lumped
RC segments with internally generated nodes. The RC segments are in a geometric
progression, increasing toward the middle of the URC line, with K as a proportionality
constant. The number of lumped segments used, if not specified for the URC line device,
is determined by the following formula:

6.4. KSPICE LOSSY TRANSMISSION LINES 121

2
RC (K-1)
F, CorL? =

10% 1ax T, T,

N =

‘ 6.1
log K (6.1)

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL
parameter is given a nonzero value, in which case the capacitors are replaced with reverse
biased diodes with a zero-bias junction capacitance equivalent to the capacitance replaced,
and with a saturation current of ISPERL amps per meter of transmission line and an
optional series resistance equivalent to RSPERL ohms per meter.

’ Name \ Parameter \ Units \ Default \ Example \ Area ‘
K Propagation Constant - 2.0 1.2 -
FMAX Maximum Frequency of interest Hz 1.0 G | 6.5 Meg -
RPERL Resistance per unit length Ym 1000 10 -
CPERL Capacitance per unit length Ffm | 10e-15 1p -
ISPERL | Saturation Current per unit length | 4/m 0 - -
RSPERL | Diode Resistance per unit length Ym 0 - -

6.4 KSPICE Lossy Transmission Lines

Unlike SPICE3, which uses the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using
the recursive convolution method. The impulse response of an arbitrary transfer function
can be determined by deriving a recursive convolution from the Pade approximations
of the function. ngspice is using this approach for simulating each transmission line’s
characteristics and each multiconductor line’s modal functions. This method of lossy
transmission line simulation has shown to give a sigificant speedup. Please note that the
following two models will support only transient simulation, no ac.

Additional Documentation Available:

e S. Lin and E. S. Kuh, ‘Pade Approximation Applied to Transient Simulation of
Lossy Coupled Transmission Lines,” Proc. TEEE Multi-Chip Module Conference,
1992, pp. 52-55.

e S. Lin, M. Marek-Sadowska, and E. S. Kuh, ‘SWEC: A StepWise Equivalent Con-
ductance Timing Simulator for CMOS VLSI Circuits,” European Design Automation
Conf., February 1991, pp. 142-148.

e S. Lin and E. S. Kuh, ‘Transient Simulation of Lossy Interconnect,” Proc. Design
Automation Conference, Anaheim, CA, June 1992, pp. 81-86.

122 CHAPTER 6. TRANSMISSION LINES

6.4.1 Single Lossy Transmission Line (TXL)

General form:
YXXXXXXX N1 0 N2 O mname <LEN=LENGTH>
Example:

Y1 1 0 2 0 ymod LEN=2
.MODEL ymod tx1 R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16

nl and n2 are the nodes of the two ports. The optional instance parameter len is the
length of the line and may be expressed in multiples of [unit]. Typically unit is given in
meters. len will override the model parameter 1length for the specific instance only.

The TXL model takes a number of parameters:

’ Name ‘ Parameter ‘ Units/Type ‘ Default ‘ Example ‘
R resistance/length Y unit 0.0 0.2
L inductance/length H [unit 0.0 9.13e-9
G conductance/length mhos [ynit 0.0 0.0
C capacitance/length F funit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

Model parameter 1length must be specified as a multiple of unit. Typically unit is given
in [m|. For transient simulation only.

6.4.2 Coupled Multiconductor Line (CPL)

The CPL multiconductor line model is in theory similar to the RLGC model, but without
frequency dependent loss (neither skin effect nor frequency-dependent dielectric loss). Up
to 8 coupled lines are supported in ngspice.

General form:
PXXXXXXX NI1 NI2...NIX GND1 NO1 NO2...NOX GND2 mname <LEN=LENGTH>
Example:

P1 inl in2 O bl b2 0 PLINE

.model PLINE CPL length={Len}

+R=1 0 1

+L={L11} {L12} {L22}

+G=0 0 0

+C={C11} {c12} {cC22}

.param Len=1 Rs=0

+ C11=9.143579E-11 C12=-9.78265E-12 (C22=9.143578E-11
+ L11=3.83572E-7 L12=8.26253E-8 L22=3.83572E-7

6.4. KSPICE LOSSY TRANSMISSION LINES 123

nil ... nix are the nodes at port 1 with gndl; nol ... nox are the nodes at port 2
with gnd2. The optional instance parameter len is the length of the line and may be
expressed in multiples of [unit]. Typically unit is given in meters. len will override the
model parameter length for the specific instance only.

The CPL model takes a number of parameters:

’ Name \ Parameter \ Units/Type \ Default \ Example
R resistance/length Q/umit 0.0 0.2
L inductance/length H [unit 0.0 9.13e-9
G conductance/length mhos [yt 0.0 0.0
C capacitance/length Ffunit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

All RLGC parameters are given in Maxwell matrix form. For the R and G matrices the
diagonal elements must be specified, for L and C matrices the lower or upper triangular
elements must specified. The parameter LENGTH is a scalar and is mandatory. For
transient simulation only.

124 CHAPTER 6. TRANSMISSION LINES

Chapter 7

Diodes

7.1 Junction Diodes

General form:

DXXXXXXX n+ n- mname <area=val> <m=val> <pj=val> <off>

+ <ic=vd> <temp=val> <dtemp=val>
+ <lm=val> <wm=val> <lp=val> <wp=val>
Examples:

DBRIDGE 2 10 DIODE1
DCLMP 3 7 DMOD AREA=3.0 IC=0.2

The pn junction (diode) implemented in ngspice expands the one found in SPICE3f5.
Perimeter effects and high injection level have been introduced into the original model
and temperature dependence of some parameters has been added. n+ and n- are the
positive and negative nodes, respectively. mname is the model name. Instance parameters
may follow, dedicated to only the diode described on the respective line. area is the area
scale factor, which may scale the saturation current given by the model parameters (and
others, see table below). pj is the perimeter scale factor, scaling the sidewall saturation
current and its associated capacitance. m is a multiplier of area and perimeter, and off
indicates an (optional) starting condition on the device for dc analysis. If the area factor is
omitted, a value of 1.0 is assumed. The (optional) initial condition specification using ic
is intended for use with the uic option on the .tran control line, when a transient analysis
is desired starting from other than the quiescent operating point. You should supply the
initial voltage across the diode there. The (optional) temp value is the temperature at
which this device is to operate, and overrides the temperature specification on the .option
control line. The temperature of each instance can be specified as an offset to the circuit
temperature with the dtemp option.

To fulfill requirements of modern process design kits (PDK) the basic spice3 model was
extended with the capability of modeling parasitic effects like sidewall junction currents
and capacitances, tunnel currents and metal and polysilicon overlap capacitances. Latter

125

126 CHAPTER 7. DIODES

effect can be activated by level=3 model parameter or by setting element parameters
1m, wm, 1p and wp. If both are given, element parameters have priority.

7.2 Diode Model (D)

A basic model statement using only the internal default model parameters is

Basic model statement: The

.model DMOD D

dc characteristics of the diode are determined by the parameters is and n. An ohmic
resistance, rs, is included. Charge storage effects are modeled by a transit time, tt, and
a nonlinear depletion layer capacitance that is determined by the parameters cjo, vj,
and m. The temperature dependence of the saturation current is defined by the parame-
ters eg, the energy, and xti, the saturation current temperature exponent. The nominal
temperature where these parameters were measured is tnom, which defaults to the circuit-
wide value specified on the .options control line. Reverse breakdown is modeled by an
exponential increase in the reverse diode current and is determined by the parameters bv

and ibv (both of which are positive numbers).

Junction DC parameters

’ Name Parameter \ Units \ Default \ Example \ Scale faci
IS (JS) Saturation current A 1.0e-14 1.0e-16 | area
JSW Sidewall saturation current A 0.0 1.0e-15 | perimeter
N Emission coefficient - 1 1.5
RS Ohmic resistance Q 0.0 100 area
BV Reverse breakdown voltage V 00 40
IBV Current at breakdown voltage A 1.0e-3 1.0e-4
NBV Breakdown Emission Coefficient - N 1.2
IKF (IK) | Forward knee current A 0.0 1.0e-3
IKR Reverse knee current A 0.0 1.0e-3
JTUN Tunneling saturation current A 0.0 area
JTUNSW | Tunneling sidewall saturation current A 0.0 perimeter
NTUN Tunneling emission coefficient - 30
XTITUN | Tunneling saturation current exponential - 3
KEG EG correction factor for tunneling - 1.0
ISR Recombination saturation current A le-14 1pA area
NR Recombination current emission coefficient - 1 2

7.2. DIODE MODEL (D) 127

Junction capacitance parameters

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
CJO (CJo) Zero-bias junction bottom-wall F 0.0 2pF area
capacitance
CJP (CJSW) | Zero-bias junction sidewall F 0.0 ApF perimeter
capacitance
FC Coefficient for forward-bias - 0.5 -

depletion bottom-wall
capacitance formula

FCS Coefficient for forward-bias - 0.5 -
depletion sidewall capacitance
formula
M (MJ) Area junction grading coefficient - 0.5 0.5
MJSW Periphery junction grading - 0.33 0.5
coefficient
VJ (PB) Junction potential 1% 1 0.6
PHP Periphery junction potential V 1 0.6
TT Transit-time sec 0 0.1ns

Metal and Polysilicon Overlap Capacitances (level=3)

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
LM Length of metal capacitor m 0.0 4um SCALE
LP Length of polysilicon capacitor m 0.0 dum SCALE
WM Width of metal capacitor m 0.0 2um SCALE
WP Width of polysilicon capacitor m 0.0 4um SCALE
XOM | Thickness of the metal to bulk m le-06 -
oxide

XOI Thickness of the polysilicon to m le-06 -
bulk oxide

XM Masking and etching effects in m 0.0 -
metal

XP Masking and etching effects in m 0.0 -
polysilicon

128 CHAPTER 7. DIODES

Temperature effects

’ Name \ Parameter \ Units \ Default \ Example ‘
.11 Si
EG Activation energy eV 1.11 0.69 Sbhd
0.67 Ge
TM1 1st order tempco for MJ /ec 0.0 -
TM2 2nd order tempco for MJ /o2 0.0 -
TNOM (TREF) | Parameter measurement temperature °C 27 50
TRS1 (TRS) Ist order tempco for RS L] 0.0 -
TRS2 2nd order tempco for RS o2 0.0 -
TM1 Ist order tempco for MJ e 0.0 -
TM2 2nd order tempco for MJ /o2 0.0 -
TTT1 1st order tempco for TT 1o 0.0 -
TTT2 2nd order tempco for TT 1/oc2 0.0 -
XTI Saturation current temperature exponent - 3.0 38 Spbnd
TLEV Diode temperature equation selector - 0
TLEVC Diode capac. temperature equation selector - 0
CTA (CTC) Area junct. cap. temperature coefficient 1o 0.0 -
CTP Perimeter junct. cap. temperature coefficient e 0.0 -
TCV Breakdown voltage temperature coefficient e 0.0 -

Noise modeling

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

Diode models may be described in the input file (or an file included by .inc) according to
the following example:

General form:
.model mname type(pnamel=pvall pname2=pval2 ...)
Examples:

.model DMOD D (bv=50 is=1e-13 n=1.05)

7.3 Diode Equations

The junction diode is the basic semiconductor device and the simplest one in ngspice,
but its model is quite complex, even when not all the physical phenomena affecting a pn
junction are handled. The diode is modeled in three different regions:

7.3. DIODE EQUATIONS 129

o Forward bias: the anode is more positive than the cathode, the diode is ‘on’ and
can conduct large currents. To avoid convergence problems and unrealistic high
current, it is prudent to specify a series resistance to limit current with the rs
model parameter.

e Reverse bias: the cathode is more positive than the anode and the diode is ‘off”. A
reverse bias diode conducts a small leakage current.

o Breakdown: the breakdown region is modeled only if the bv model parameter is
given. When a diode enters breakdown the current increases exponentially (remem-
ber to limit it); bv is a positive value.

Parameters Scaling

Model parameters are scaled using the unit-less parameters area and pj and the multiplier
m as depicted below:

AREA.;y = AREAm

PJesy =PJm

ISy =1SAREA.;r + JSW PJyy
IBV.;; =1IBV AREA.¢¢

IK .y =1IK AREA.yy

IKR.;; =1IKR AREA ;¢

CJeps = CIOARE A ¢y

CJP.pp = CJP Py

Diode DC, Transient and AC model equations

The diode model has certain dc currents for bottom and sidewall components. Exemplary
here is the equation for the bottom part:

I[S.s(e¥# — 1)+ Vp - GMIN, if Vp > —3NT
Ip = { ~IS.pfll+ (YY) 4 Vi - GMIN, i = BVipy < Vp < —3MT (7.1)

—a(BVess+VD)

—IS.p(e— ™)+ Vp-GMIN, if Vp < —BV,y;

Two secondary effects are modeled if the appropriate parameters (see table Junction DC
parameters) are given: Recombination current and bottom and sidewall tunnel current.

The breakdown region must be described with more depth since the breakdown is not
modeled physically. As written before, the breakdown modeling is based on two model
parameters: the ‘nominal breakdown voltage’ bv and the current at the onset of break-
down ibv. For the diode model to be consistent, the current value cannot be arbitrarily
chosen, since the reverse bias and breakdown regions must match. When the diode enters
breakdown region from reverse bias, the current is calculated using the formula':

Lif you look at the source code in file diotemp.c you will discover that the exponential relation is
replaced with a first order Taylor series expansion.

130 CHAPTER 7. DIODES

Algorithm 7.1 Diode breakdown current calculation

if [B‘/eff < Ipgwn then
IB‘/eff = [bdum

BV, = BV
else
BVeyy =BV — NV, In(“-22)
Lguwn = —IS.sp(e ™ — 1) (7.2)

The computed current is necessary to adjust the breakdown voltage making the two
regions match. The algorithm is a little bit convoluted and only a brief description is
given here:

Most real diodes shows a current increase that, at high current levels, does not follow
the exponential relationship given above. This behavior is due to high level of carriers
injected into the junction. High injection effects (as they are called) are modeled with ik
and ikr.

—Ibb__ ifV, > —3NAT
I+ ”ﬁfo !
Ipers = © 7.3
e/t p otherwise. (7.3)

14/t
+ IKReff
Diode capacitance is divided into two different terms:

o Depletion capacitance

« Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the
bottom of the junction (bottom-wall depletion capacitance) and the other to the periphery
(sidewall depletion capacitance). The basic equations are

C'Diode - Cdiffusion + Cdepletion

Where the depletion capacitance is defined as:

Cdepletion = Cdeplbw + CYdeplsw

The diffusion capacitance, due to the injected minority carriers, is modeled with the
transit time tt:

8[Deff
oVp

Cdiffusion =TT

The depletion capacitance is more complex to model, since the function used to ap-
proximate it diverges when the diode voltage become greater than the junction built-in

7.3. DIODE EQUATIONS 131

potential. To avoid function divergence, the capacitance function is approximated with
a linear extrapolation for applied voltage greater than a fraction of the junction built-in
potential.

Ceps(1=5)™, if Vp < FC'-VJ
deply 1-FC(14+MJI)+MI YR . (7.4)
ClJeyy 1-_FC)a™My) otherwise.
CJIP.ss(1 — pis) MY, if Vi, < FCS - PHP .
deplsw — 1-FCS(1+MJSW)+MJISW- 25 , .
CJP.y ((1_FCS)(11M Tswr e, otherwise.

Temperature dependence

The temperature affects many of the parameters in the equations above, and the follow-
ing equations show how. Omne of the most significant parameters that varies with the
temperature for a semiconductor is the band-gap energy:

TNOM?
_ _ —4
EG,om = 1.16 — 7.02¢ TNOM + 1108.0 (7.6)
4 T
EG(T)=1.16 — 7.02¢ TNOM £ 1108.0 (7.7)
The leakage current temperature’s dependence is:
IS(T) = IS e~ (7.8)
JSW(T) = JSW e 5" (7.9)
where ‘logfactor’ is defined as
EG EG
= — XTIl 1
log factor Vi(INOM) ~ V,(T) + n(TNOM) (7.10)
The contact potentials (bottom-wall an sidewall) temperature dependence is:
T EGom EG(T)
VJ(T)=VJ] —Viy(T) |31 — 7.11
(T) = VI(gop) — VT { TNom) t v iTNOM) ~ V(T 1 (7.11)
T EGom EG(T)
PHP(T) =PHP(——) — Vi(T -1 — 12
(T) (Txoar) ~ V) [3 MTNon’ T vNoN) T V(T] (7.12)

The depletion capacitances temperature dependence is:

132 CHAPTER 7. DIODES

CJ(T)=CJ {1 +MJ(4.0e”(T — TNOM) — V\J/ST) - 1)} (7.13)

CJSW(T) = CISW {1 + MJISW (4.0e~4(T — TNOM) — %Pg) + 1)} (7.14)

The transit time temperature dependence is:

TT(T) = TT(1 + TTT1(T — TNOM) + TTT2(T — TNOM)?) (7.15)

The junction grading coefficient temperature dependence is:

MJ(T) = MJ(1+ TM1(T — TNOM) + TM2(T — TNOM)?) (7.16)

The series resistance temperature dependence is:
RS(T) = RS(1 + TRS(T — TNOM) + TRS2(T — TNOM)?) (7.17)

Noise model

The diode has three noise contribution, one due to the presence of the parasitic resistance
rs and the other two (shot and flicker) due to the pn junction.

The thermal noise due to the parasitic resistance is:

—— 4kTAf
2, = 7.18
'Rs RS ()
The shot and flicker noise contributions are
— KF - [AF
i2 = 2qIpAf + ——L-Af (7.19)

f

Self Heating model

Ngspice diode model has implemented a simple self heating approach. A current equivalent
to the dissipated power is conducted to a RC parallel circuit. The connection node voltage
is so a thermal equivalent to the junction overtemperature. This temperature follows in
a electro-thermal feedback with appropriate change of the diode current and capacitance.

Compared to the standard diode we have a third node tj and a flag thermal on element
line. In the model description we have to set rthhO and cth0 model parameter.
General form element usage:

DXXXXXXX n+ n- tj mname <off> <ic=vd> thermal

Example model:

.model DPWR D (bv=16 is=1e-10 n=1.03 rth0=50 cthO=1u)

Chapter 8

BJT

8.1 Bipolar Junction Transistors (BJTs)

General form:

QXXXXXXX nc nb ne <ns> <tj> mname <area=val> <areac=val>
+ <areab=val> <m=val> <off> <ic=vbe,vce> <temp=val>
+ <dtemp=val>

Examples:

Q23 10 24 13 QMOD IC=0.6, 5.0
Q50A 11 26 4 20 MOD1

nc, nb, and ne are the collector, base, and emitter nodes, respectively. ns is the (op-
tional) substrate node. When unspecified, ground is used. tj is the (optional) junction
temperature node, available in the VBIC model (see 8.2.2). mname is the model name,
area, areab, areac are the area factors (emitter, base and collector respectively), and
off indicates an (optional) initial condition on the device for the dc analysis. If the area
factor is omitted, a value of 1.0 is assumed.

The (optional) initial condition specification using ic=vbe,vce is intended for use with the
uic option on a .tran control line, when a transient analysis is desired to start from other
than the quiescent operating point. See the .ic control line description for a better way to
set transient initial conditions. The (optional) temp value is the temperature where this
device is to operate, and overrides the temperature specification on the .option control
line. Using the dtemp option one can specify the instance’s temperature relative to the
circuit temperature.

8.2 BJT Models (NPN/PNP)

Ngspice provides three different BJT device models, which are selected by the .model
card.

133

134 CHAPTER 8. BJT

.model QMOD1 PNP
.model QMOD3 NPN level=4

These are the minimal versions, using default parameters supplied by ngspice. Further
optional parameters listed in the table below may replace the ngspice default parameters.
The level keyword specifies the model to be used:

e level=1: This is the original SPICE BJT model, and it is the default model if the
level keyword is not specified on the .model line. By activating certain parameter
a modified version of the original SPICE BJT that models both vertical and lateral
devices, includes temperature corrections of collector, emitter and base resistors and
allow modeling of quasi-saturation effects.

o level=4: Advanced VBIC model (see 8.2.2 and http://www.designers-guide.org/VBIC/
for details)

o level=8: HICUM/L2 model (see 8.2.4 and the official website for details)

8.2.1 Gummel-Poon Models

The bipolar junction transistor model in ngspice is an adaptation of the integral charge
control model of Gummel and Poon. This modified Gummel-Poon model extends the
original model to include several effects at high bias levels. The model automatically
simplifies to the simpler Ebers-Moll model when certain parameters are not specified.
The parameter names used in the modified Gummel-Poon model have been chosen to be
more easily understood by the user, and to reflect better both physical and circuit design
thinking.

The dc model is defined by the parameters is, bf, nf, ise, ikf, and ne, which determine
the forward current gain characteristics, is, br, nr, isc, ikr, and nc, which determine
the reverse current gain characteristics, and vaf and var, which determine the output
conductance for forward and reverse regions.

Parameter nkf (nk)was introduced for more accurate high current beta rolloff modelling.

The BJT model has among the standard temperature parameters an extension compatible
with most foundry provided process design kits (see parameter table below tlev).

The BJT model includes the substrate saturation current iss. Three ohmic resistances
rb, rc, and re are included, where rb can be high current dependent. Base charge storage
is modeled by forward and reverse transit times, tf and tr, where the forward transit time
tf can be bias dependent if desired. Nonlinear depletion layer capacitances are defined
with cje, vje, and nje for the B-E junction, cjc, vjc, and njc for the B-C junction and
cjs, vjs, and mjs for the C-S (collector-substrate) junction.

The BJT model support a substrate capacitance that is connected to the device’s base
or collector, to model lateral or vertical devices dependent on the parameter subs. The
temperature dependence of the saturation currents, is and iss (for the level 2 model),
is determined by the energy-gap, eg, and the saturation current temperature exponent,
xti.

In the new model, additional base current temperature dependence is modeled by the beta
temperature exponent xtb. The values specified are assumed to have been measured at

http://www.designers-guide.org/VBIC/
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html

8.2. BJT MODELS (NPN/PNP)

135

the temperature tnom, which can be specified on the .options control line or overridden
by a specification on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The
parameter names used in earlier versions of SPICE2 are still accepted.

Gummel-Poon BJT Parameters (incl. model extensions)

] Name ‘ Parameters ‘ Units ‘ Default ‘ Example ‘ Scale factor ‘
SUBS Substrate connection: 1 for 1
vertical geometry, -1 for lateral
geometry.
IS Transport saturation current. A 1.0e-16 | 1.0e-15 area
ISS Reverse saturation current, A 0.0 1.0e-15 area
substrate-to-collector for vertical
device or substrate-to-base for
lateral.
BF Ideal maximum forward beta. - 100 100
NF Forward current emission - 1.0 1
coefficient.
VAF (VA) Forward Early voltage. Vv 00 200
IKF Corner for forward beta current A 00 0.01 area
roll-off.
NKF(NK) High current Beta rolloff - 0.5 0.9
exponent
ISE B-E leakage saturation current. A 0.0 le-13 area
NE B-E leakage emission coefficient. - 1.5 2
BR Ideal maximum reverse beta. - 1 0.1
NR Reverse current emission - 1 1
coefficient.
VAR (VB) Reverse Early voltage. 1% 00 200
IKR Corner for reverse beta high A 00 0.01 area
current roll-off.
ISC B-C leakage saturation current A 0.0 le-13 area
(area is ‘areab’ for vertical
devices and ‘areac’ for lateral).
NC B-C leakage emission coefficient. - 2 1.5
RB Zero bias base resistance. Q 0 100 1/area
IRB Current where base resistance A 00 0.1 area
falls halfway to its min value.
RBM Minimum base resistance at high Q RB 10 1/area
currents.
RE Emitter resistance. Q 0 1 1/area
RC Collector resistance. Q 0 10 1/area
CJE B-E zero-bias depletion F 0 2pF area
capacitance.
VJE (PE) B-E built-in potential. Vv 0.75 0.6

for RE.

136 CHAPTER 8. BJT

MJE (ME) B-E junction exponential factor. - 0.33 0.33

TF Ideal forward transit time. sec 0 0.1ns
XTF Coefficient for bias dependence - 0
of TF.
VTF Voltage describing VBC V 00
dependence of TF.
ITF High-current parameter for effect A 0 - area
on TF.
1
PTF Excess phase at freq= ST Hz. deg
CcJC B-C zero-bias depletion F 2pF area
capacitance (area is ‘areab’ for
vertical devices and ‘areac’ for
lateral).

VJC (PC) B-C built-in potential. 1% 0.75 0.5
MJC B-C junction exponential factor. - 0.33 0.5
XCJC Fraction of B-C depletion - 1

capacitance connected to
internal base node.
TR Ideal reverse transit time. sec 0 10ns
CJS Zero-bias collector-substrate F 0 2pF area
capacitance (area is ‘areac’ for
vertical devices and ‘areab’ for
lateral).
VIS (PS) Substrate junction built-in 1% 0.75
potential.
MJS (MS) Substrate junction exponential - 0 0.5
factor.
XTB Forward and reverse beta - 0
temperature exponent.
EG Energy gap for temperature eV 1.11
effect on IS.
XTI Temperature exponent for effect - 3
on IS.
KF Flicker-noise coefficient. - 0
AF Flicker-noise exponent. - 1
FC Coefficient for forward-bias - 0.5 0
depletion capacitance formula.
TNOM (TREF) | Parameter measurement °C 27 50
temperature.
TLEV BJT temperature equation - 0
selector
TLEVC BJT capac. temperature - 0
equation selector
TRE1 Ist order temperature coefficient | 1/°c 0.0 le-3

8.2. BJT MODELS (NPN/PNP)

137

TRE2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RE.
TRC1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RC .
TRC2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RC.
TRB1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RB.
TRB2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RB.
TRBM1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RBM
TRBM2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RBM
TBF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for BF
TBF2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for BF
TBR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for BR
TBR2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for BR
TIKF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IKF
TIKF2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for IKF
TIKR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IKR
TIKR2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for IKR
TIRB1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IRB
TIRB2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for IRB
TNC1 Ist order temperature coefficient | 1/°c 0.0 le-3
for NC
TNC2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for NC
TNE1 Ist order temperature coefficient | 1/°c 0.0 le-3
for NE
TNE2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for NE
TNF1 st order temperature coefficient | 1/°c 0.0 le-3
for NF
TNE2 2nd order temperature coefficient | 1/°c2 0.0 le-5

for NF

138

CHAPTER 8. BJT

TNR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IKF
TNR2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for IKF
TVAF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for VAF
TVAF2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for VAF
TVARI1 Ist order temperature coefficient | 1/°c 0.0 le-3
for VAR
TVAR2 2nd order temperature coefficient | 1/°¢c2 0.0 le-5
for VAR
CTC Ist order temperature coefficient | 1/°c 0.0 le-3
for CJC
CTE Ist order temperature coefficient | 1/°c 0.0 le-3
for CJE
CTS Ist order temperature coefficient | 1/°c 0.0 le-3
for CJS
TVIJC Ist order temperature coefficient | 1/°c? 0.0 le-5
for VJC
TVJE Ist order temperature coefficient | 1/°c 0.0 le-3
for VJE
TITF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for ITF
TITF2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for ITF
TTF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for TF
TTF2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for TF
TTR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for TR
TTR2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for TR
TMJE1 Ist order temperature coefficient | 1/°c 0.0 le-3
for MJE
TMJE2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for MJE
TMJC1 Ist order temperature coefficient | 1/°c 0.0 le-3
for MJC
TMJC2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for MJC

Quasi-Saturation Model extension

By defining parameter RCO, VO, GAMMA and QCO an extension of the Gummel-
Poon model will be switched on to model bipolar junction transistors that exhibit quasi-

8.2. BJT MODELS (NPN/PNP) 139

saturation effects. A description can be found in [24].

\ Name \ Parameters \ Units \ Default \ Example \ Scale factor \
RCO Epitaxial region resistance Q 0 0.45 1/area
VO Carrier mobility knee \Y% 10 4.16
voltage
GAMMA | Epitaxial region doping — le-11 1.0e-15
factor
QCO Epitaxial region charge C 0.0 3.4E-11
factor
VG Energy gap QS temp. A% 1.206 1.2
depend.
CN Temperature exponent of 2.42 NPN 2.2 PNP
RCI
D Temperature exponent of .87 NPN .52 PNP
VO

The Collector current output characteristic shows a special moderate transition in the
BJT saturation region, see figure 8.1. Furthermore DC current gain and the unity gain
frequency fT falls sharply.

50
40 — —— -
|
f,_f "
.—'—'—'_'_'_'_'_—F

3.0

!{ —]

.r—"-'-'_’_'-'_(_'_’
20 i
T
0.0
0.0 05 1.0 15 2.0 25 3.0 35 4.0 45 50
V-Sweep A

Figure 8.1: Output characteristic with and w/o Quasi-Saturation

8.2.2 VBIC Model

The VBIC model is an extended development of the Standard Gummel-Poon (SGP)
model with the focus of integrated bipolar transistors in today’s modern semiconductor
technologies. With the implemented modified Quasi-Saturation model from Kull and

140 CHAPTER 8. BJT

Nagel it is also possible to model the special output characteristic of discrete switching
and RF transistors. It is a improved alternative to the SGP model for silicon, SiGe and
ITI-V HBT devices.

VBIC Capabilities compared to Standard Gummel-Poon Model:

o Integrated substrate transistor for parasitic devices in integrated processes
o Weak avalanche and base-emitter breakdown model

o Improved Early effect modeling

o Physical separation of Ic and Ib

o Improved depletion capacitance model

e Improved temperature modeling

Self-heating modeling

VBIC self-heating model

This model has implemented a simple 1-pole thermal network to cover self-heating effects.
That means that the power dissipation is gathered in all branches of the device model
and is conducted as an equivalent current Ith into one model node dt. This node has a
resistor Rth and capacitor Cth parallel connection to ground. Because the resistor plays
the role of the thermal resistance from junction to case the arising voltage at node dt is
equivalent the BJT junctions temperature. The model realisizes that this temperature rise
follows in deviations for internal resistors, currents and capacitors calculations according
the temperature update equations. This process is included into the ngspice iteration
schema for all analysis.

The simple thermal network of the VBIC model is shown in Fig. 8.2.

dt

Cth
@ It —
Rt

thermaFnetwork

Figure 8.2: VBIC thermal network

8.2. BJT MODELS (NPN/PNP) 141

How to instantiate the bipolar VBIC model (only minimal version) with self-heating:

vc ¢ 0 O

vb b 0 1

ve e 0 O

vs s 0 O

Q1 ¢ b e s dt modl area=1
.model modl npn Level=4

Of course it is possible to connect an more accurate thermal network to the node dt. The
following example is showing a simplified thermal network covering the thermal resistances
and capacitors of junction-case and case-ambient transitions including a heat-sink.

Q1 ¢ b e s dt mod2

X1 dt tamb junction-ambient
VTamb tamb O 30

.subckt junction-ambient jct amb
rjc jct 1 0.4

ccs 1 0O bm

rcs 1 2 0.1

csa 2 0 30m

rsa 2 amb 1.3

.ends

8.2.3 MEXTRAM Model

MEXTRAM (Most EXquisite TRAnsistor Model)) is an advanced compact model for
bipolar transistors that contains many features that the widely-used Gummel-Poon model
lacks. The model was initiated by Philips and later co-worked by NXP Semiconductors
and different Universities.

Mextram has proven excellent for Si and SiGe processes, including analog, mixed-signal,
high speed RF as well as high voltage high power technologies. It accounts for high injec-
tion effects with a dedicated epi-layer model, self heating, avalanche, low-frequency and
high frequency noises in physical manners, and is formulated with minimal interactions
between DC and AC characteristics that simplifies parameter extraction.

For more information see MEXTRAM and MEXTRAM Definition.

Ngspice has implemented version 504.12.1 in his experimental ADMS tree. It will be
activated by the BJT model parameter level=6.

8.2.4 HICUM level 2 Model

The physics-based HIgh-CUrrent Model (HICUM) Level2 (L2) has been a standard com-
pact model for bipolar junction transistors and heterojunction bipolar transistors (HBTSs)
for many years. The model has been shown to be applicable to many process genera-
tions of SiGe HBTs and also to InP HBTS, including high-speed and high-voltage device

http://www.eng.auburn.edu/~niuguof/mextram/index.html
https://www.nxp.com/wcm_documents/models/bipolar-models/mextram/mextramdefinition.pdf

142 CHAPTER 8. BJT

Figure 8.3: The equivalent circuit of HICUM /L2 without the self-heating, NQS and noise
correlation networks.

designs. The implemented version in Ngspice is HICUML2/2.4 and can be activated by
BJT model parameter level=8.

HICUML2 captures most to all known physical effects relevant in HBTs, in example:

o substrate transistor

« avalanche effect

e physics based transfer current model

o self-heating

» accurate modeling of the temperature dependence

» excess phase between base and collector current

Note that the noise correlation network is not implemented in Ngspice. More information
regarding the model and its parameters can be found on the website.

The equivalent circuit of the model is shown in fig. 8.3. The model is employed in many
PDKs for state-of-the-art SiGe and InP HBTs and is actively developed at TU Dresden.

The HICUM model exposes the following nodes to the user:
C(ollector) B(ase) E(mitter) S(ubstrate) T(emperature)

By connecting the T and S nodes of the model to other circuit elements, the thermal
and substrate network can be modified by the user. Note that both self-heating and the
avalanche effect may cause convergency issues if the operating region is too extreme.

The HICUM/L2 model can be initiated like this example:

https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html

8.2. BJT MODELS (NPN/PNP) 143

Ve
vb
ve
vs

Q1

Q. 0 n ®o T o0

H o O o oo

O - O

0
e s dt modl area=1
modl npn Level=8

Self-heating is activated by model parameters FLSH, RTH and connecting T node of the
device instance. FLSH = 1 will only consider main thermal contributions of IC and IB,
FLSH = 2 include all power dissipations of the transistor.

8.2.5 HICUM level 0 Model

The HIgh-CUrrent Model (HICUM) Level0 (LO) is a simplified version of the HICUM
level 2 model. Ngspice has implemented version 1.32 in his experimental ADMS tree. It
will be activated by the BJT model parameter level=7.

144 CHAPTER 8. BJT

Chapter 9

JFETSs

9.1 Junction Field-Effect Transistors (JFETs)

General form:
JXXXXXXX nd ng ns mname <area> <off> <ic=vds,vgs> <temp=t>
Examples:

Ji1 7 2 3 JM1 OFF

nd, ng, and ns are the drain, gate, and source nodes, respectively. mname is the model
name, area is the area factor, and off indicates an (optional) initial condition on the
device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The
(optional) initial condition specification, using ic=VDS,VGS is intended for use with the
uic option on the .TRAN control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .ic control line for a better way to set
initial conditions. The (optional) temp value is the temperature where this device is to
operate, and overrides the temperature specification on the .option control line.

9.2 JFET Models (NJF/PJF)

9.2.1 Basic model statement

.model JM1 NJF level=1
.model JMOD2 PJF level=2

9.2.2 JFET level 1 model with Parker Skellern modification

The level 1 JFET model is derived from the FET model of Shichman and Hodges. The
dc characteristics are defined by the parameters VIO and BETA, which determine the

145

146 CHAPTER 9. JFETS

variation of drain current with gate voltage, LAMBDA, which determines the output con-
ductance, and IS, the saturation current of the two gate junctions. Two ohmic resistances,
RD and RS, are included.

vgst = vgs — V1O (9.1)
B, = BETA (1 + LAMBDA vds) (9.2)
1-B
vds - GMIN, if vgst <0
Iprain = § By vds (vds (bfacvds — B) vgst (2B + 3bfac (vgst — vds))) +vds - GMIN, if vgst > vds
B, vgst® (B + vgst bfac) +vds - GMIN, if vgst < vds
(9.4)

Note that in Spice3f and later, the fitting parameter B has been added by Parker and
Skellern. For details, see [9]. If parameter B is set to 1 equation above simplifies to

vds - GMIN, if vgst <0
Iprain = { Bp vds (2ugst — vds) +vds - GMIN, if vgst > vds (9.5)
B, vgst* + vds - GMIN, if vgst < vds

Charge storage is modeled by nonlinear depletion layer capacitances for both gate junc-
tions, which vary as the —1/2 power of junction voltage and are defined by the parameters

CGS, CGD, and PB.

9.2. JFET MODELS (NJF/PJF) 147

] Name \ Parameter \ Units \ Default \ Example \ Scaling factor ‘
VTO Threshold voltage Vi V -2.0 -2.0
BETA Transconductance parameter (5) | 4/v" | 1.0e-4 1.0e-3 area
LAMBDA Channel-length modulation v 0 1.0e-4
parameter (\)
RD Drain ohmic resistance Q 0 100 1/area
RS Source ohmic resistance Q 0 100 1/area
CGS Zero-bias G-S junction F 0 5pF area
capacitance Cjq
CGD Zero-bias G-D junction F 0 1pF area
capacitance Cyq
PB Gate junction potential V 1 0.6
IS Gate saturation current Ig A 1.0e-14 | 1.0e-14 area
B Doping tail parameter - 1 1.1
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient for 1.0 2.0
nlev=3
FC Coefficient for forward-bias 0.5
depletion capacitance formula
TNOM Parameter measurement °C 27 50
temperature
TCV Threshold voltage temperature 1/oc 0.0 0.01
coefficient
VTOTC Threshold voltage temperature 1/oc 0.0 -2.5m
coefficient (alternative model)
BEX Mobility temperature exponent - 0.0 1.1
BETATCE | Mobility temperature exponent | %/°c 0.0 -0.5
(alternative model)
XTI Gate saturation current - 3.0
temperature coefficient
EG Bandgap voltage 1.11

Additional to the standard thermal and flicker noise model an alternative thermal channel
noise model is implemented and is selectable by setting NLEV parameter to 3. This follows
in a correct channel thermal noise in the linear region.

(14 a+a?)

2
Suoise = 5 4KT - BETA - Vgst GDSNOI (9.6)

with

vgs—VTO?

(9.7)

] — —vds if vgs — VTO > vds
o =
0, else

JFET level 1 model has an alternative temperature model for main parameter VIO and
BETA.:

148 CHAPTER 9. JFETS

« VTOTC is given:

VTO(Temp) =VTO +VTOTC % (Temp — TNOM) (9.8)

e« VTOTC not given:

VTO(Temp) =VTO —TCV % (Temp — TNOM) (9.9)

o« BETATCE is given:

BETA(Temp) = BET A 1.01BFTATCE«(Temp=TNOM) (9.10)

BETATCE not given:

(9.11)

Tem BEX
BETA(Temp) = BETA * (p)

TNOM

9.2.3 JFET level 2 Parker Skellern model

The level 2 model is an improvement to level 1. Details are available in a pdf originating
from Macquarie University. Some important items are

e The description maintains strict continuity in its high-order derivatives, which is
essential for prediction of distortion and intermodulation.

e Frequency dependence of output conductance and transconductance is described as
a function of bias.

o Both drain-gate and source-gate potentials modulate the pinch-off potential, which
is consistent with S-parameter and pulsed-bias measurements.

o Self-heating varies with frequency.

« Extreme operating regions - subthreshold, forward gate bias, controlled resistance,
and breakdown regions - are included.

o Parameters provide independent fitting to all operating regions. It is not necessary
to compromise one region in favor of another.

e Strict drain-source symmetry is maintained. The transition during drain-source
potential reversal is smooth and continuous.

The model equations are described in this pdf document and in [19)].

http://ngspice.sourceforge.net/external-documents/models/psfet.pdf
http://www.engineering.mq.edu.au/research/groups/cnerf/psfet.pdf

9.2. JFET MODELS (NJF/PJF)

] Name \ Description \ Units \ Default ‘
ID Device IDText Text PF1
ACGAM Capacitance modulation - 0
BETA Linear-region transconductance scale - 1074
CGD Zero-bias gate-source capacitance F 0
CGS Zero-bias gate-drain capacitance F 0
DELTA Thermal reduction coefficient Vw 0
FC Forward bias capacitance parameter - 0.5
HFETA | High-frequency VGS feedback parameter - 0
HFE1 HFGAM modulation by VGD Vv 0
HFE2 HFGAM modulation by VGS v 0
HFGAM | High-frequency VGD feedback parameter - 0
HFG1 HFGAM modulation by VSG v 0
HFG2 HFGAM modulation by VDG Uy 0
IBD Gate-junction breakdown current A 0
IS Gate-junction saturation current A 101
LFGAM Low-frequency feedback parameter - 0
LFG1 LFGAM modulation by VSG v 0
LFG2 LFGAM modulation by VDG 1y 0
MVST Subthreshold modulation Uy 0
N Gate-junction ideality factor - 1
P Linear-region power-law exponent - 2
Q Saturated-region power-law exponent - 2
RS Source ohmic resistance Q 0
RD Drain ohmic resistance Q 0
TAUD Relaxation time for thermal reduction S 0
TAUG Relaxation time for gamma feedback S 0
VBD Gate-junction breakdown potential V 1
VBI Gate-junction potential V 1
VST Subthreshold potential \%4 0
VTO Threshold voltage % -2.0
XC Capacitance pinch-off reduction factor - 0
XI Saturation-knee potential factor - 1000
Z Knee transition parameter - 0.5
RG Gate ohmic resistance Q 0
LG Gate inductance H 0
LS Source inductance H 0
LD Drain inductance H 0
CDSS Fixed Drain-source capacitance F 0
AFAC Gate-width scale factor - 1
NFING Number of gate fingers scale factor - 1
TNOM | Nominal Temperature (Not implemented) | K 300 K
TEMP Temperature K 300 K

150 CHAPTER 9. JFETS

Chapter 10

MESFETs

10.1 MESFETs

General form:
ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>
Examples:

Z1 7 2 3 ZM1 OFF

10.2 MESFET Models (NMF /PMF)

10.2.1 Basic model statements

.model ZM1 NMF level=1
.model MZMOD PMF level=4

These model statements will use the default parameters (level 1 listed below).

10.2.2 Model by Statz e.a.

The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as
described in [11]. The dc characteristics are defined by the parameters VTO, B, and
BETA, which determine the variation of drain current with gate voltage, ALPHA, which
determines saturation voltage, and LAMBDA | which determines the output conductance.
The formula are given by:

B(Vgs—Vr)? Vas |3 3
[d_ WS—TVT) 1—‘1—14% ‘(1+Lvds) fOI'O<Vd5<Z (101)
) B(Vgs—Vr)? ’
SR as (14 L) for V> 2

151

152 CHAPTER 10. MESFETS

Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total
gate charge as a function of gate-drain and gate-source voltages and is defined by the
parameters cgs, cgd, and pb.

’ Name \ Parameter \ Units \ Default \ Example \ Area ‘
VTO Pinch-off voltage V -2.0 -2.0
BETA Transconductance parameter Afvz2 | 1.0e-4 1.0e-3 *
B Doping tail extending parameter Uy 0.3 0.3 *
ALPHA Saturation voltage parameter Uy 2 2 *
LAMBDA | Channel-length modulation parameter | 1/v 0 1.0e-4
RD Drain ohmic resistance Q 0 100 *
RS Source ohmic resistance Q 0 100 *
CGS Zero-bias G-S junction capacitance F 0 opF *
CGD Zero-bias G-D junction capacitance F 0 1pF *
PB Gate junction potential V 1 0.6
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
FC Coefficient for forward-bias depletion - 0.5
capacitance formula

Device instance:

z1l 2 3 0 mesmod area=1.4
Model:

.model mesmod nmf level=1 rd=46 rs=46 vt0=-1.3
+ lambda=0.03 alpha=3 beta=1.4e-3

10.2.3 Model by Ytterdal e.a.

level 2 (and levels 3,4) Copyright 1993: T. Ytterdal, K. Lee, M. Shur and T. A. Fjeldly

to be written

M. Shur, T.A. Fjeldly, T. Ytterdal, K. Lee, "Unified GaAs MESFET Model for Circuit
Simulation", Int. Journal of High Speed Electronics, vol. 3, no. 2, pp. 201-233, 1992

10.2.4 hfetl

level 5
Heterostructure Field Effect Transistor model as described in section 4.6 of the book

K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, Semiconductor Device Modeling for VLSI,
1993, Prentice Hall, New Jersey.

Model parameters, equivalent circuit diagrams and device equations are also described in
the AIM-Spice reference manual, section Device Models A.

http://www.aimspice.com/downloads/aimspiceref.2020.100.pdf

10.2. MESFET MODELS (NMF/PMF) 153

10.2.5 hfet2

level6

The HFET level 2 model is a simplified version of the level 1 model. The model is
optimized for speed and is suitable for simulation of digital circuits. To increase the
speed, some of the features included in the level 1 model is not implemented for the level
2 model.

154 CHAPTER 10. MESFETS

Chapter 11

MOSFETs

Ngspice supports all the original MOSFET models present in SPICE3f5 and almost all
the newer ones that have been published and made open-source. Both bulk and SOI
(Silicon on Insulator) models are available. When compiled with the cider option, ngspice
implements the four terminals numerical model that can be used to simulate a MOS-
FET (please refer to numerical modeling documentation for additional information and
examples).

11.1 MOSFET devices

General form:

MXXXXXXX nd ng ns nb mname <m=val> <l=val> <w=val>
+ <ad=val> <as=val> <pd=val> <ps=val> <nrd=val>
+ <nrs=val> <off> <ic=vds, vgs, vbs> <temp=t>

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MOSN L=5U0 W=2U
M1 2 9 3 0 MOSP L=10U W=5U AD=100P AS=100P PD=40U PS=40U

Note the suffixes in the example: the suffix ‘u’ specifies microns (le-6 m) and ‘p’ sq-
microns (le-12 m?).

The instance card for MOS devices starts with the letter ‘M’ nd, ng, ns, and nb are the
drain, gate, source, and bulk (substrate) nodes, respectively. mname is the model name and
m is the multiplicity parameter, which simulates ‘m’ paralleled devices. All MOS models
support the ‘m’ multiplier parameter. Instance parameters 1 and w, channel length and
width respectively, are expressed in meters. The drain and source diffusion areas are ad
and as, in square meters (m?).

If any of 1, w, ad, or as are not specified, default values are used. The use of defaults
simplifies input file preparation, as well as the editing required if device geometries are to
be changed. pd and ps are the perimeters of the drain and source junctions, in meters. nrd

155

156 CHAPTER 11. MOSFETS

and nrs designate the equivalent number of squares of the drain and source diffusions;
these values multiply the sheet resistance rsh specified on the .model control line for
an accurate representation of the parasitic series drain and source resistance of each
transistor. pd and ps default to 0.0 while nrd and nrs to 1.0. off indicates an (optional)
initial condition on the device for dc analysis. The (optional) initial condition specification
using ic=vds,vgs,vbs is intended for use with the uic option on the .tran control line,
when a transient analysis is desired starting from other than the quiescent operating
point. See the .ic control line for a better and more convenient way to specify transient
initial conditions. The (optional) temp value is the temperature at which this device is to
operate, and overrides the temperature specification on the .option control line.

The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for
level 4 or 5 (BSIM) devices.

BSIM3 (v3.2 and v3.3.0), BSIM4 (v4.7 and v4.8) and BSIMSOI models are also supporting
the instance parameter delvto and muluO for local mismatch and NBTI (negative bias
temperature instability) modeling:

’ Name \ Parameter \ Units \ Default \ Example ‘
delvto (delvt0) Threshold voltage shift V 0.0 0.07
mulu0 Low-field mobility multiplier (U0) - 1.0 0.9

11.2 MOSFET models (NMOS/PMOS)

MOSFET models are the central part of ngspice, probably because they are the most
widely used devices in the electronics world. Ngspice provides all the MOSFETs imple-
mented in the original Spice3f and adds several models developed by UC Berkeley’s Device
Group and other independent groups.

Each model is invoked with a .model card. A minimal version is:
.model MOSN NMOS level=8 version=3.3.0

The model name MOSN corresponds to the model name in the instance card (see 11.1).
Parameter NMOS selects an n-channel device, PMOS would point to a p-channel tran-
sistor. The level and version parameters select the specific model. Further model
parameters are optional and replace ngspice default values. Due to the large number
of parameters (more than 100 for modern models), model cards may be stored in extra
files and loaded into the netlist by the .include (2.7) command. Model cards are specific
for a an IC manufacturing process and are typically provided by the IC foundry. Some
generic parameter sets, not linked to a specific process, are made available by the model
developers, e.g. UC Berkeley’s Device Group for BSIM4 and BSIMSOI.

Ngspice provides several MOSFET device models, which differ in the formulation of the
[-V characteristic, and are of varying complexity. Models available are listed in table 11.1.
Current models for IC design are BSIM3 (11.2.10, down to channel length of 0.25 pm),
BSIM4 (11.2.11, below 0.25 pm), BSIMSOI (11.2.14; silicon-on-insulator devices), HiSIM2
and HiSIM__HV (11.2.16, surface potential models for standard and high voltage/high
power MOS devices).

http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/

157

11.2. MOSFET MODELS (NMOS/PMOS)

SOIN'T 10] UOISIOA 95e}[OA [SIH RUIYSOIY | 0C'C/TT T AH WISH | €L
BUWISOII] 0'8'C CINISTH | 89
uojydureyinog €108 DVLS | 09
Kooy dadIosed | LS
Koroy1og adrosed | 94
Kojoy1ogg adrosed | ¢S
PoIn3yuos swpe 11R[UOPTI) 01 dsd | Sv
poIndyuod swpe TAdd 9 CAMH | ¥¥
Aopestog 187 yINISd | 7S ‘TT
Aopsg | 0LF LAYINISE | 7S ‘FT
Aoroxrog G99y 9AVINISH | 7S ‘TT
9P09 UOISIOA THNIN Aoyg | C¥-0¥ GAPINISE | 7S ‘71T
Aopostog ey 10Svd | 8¢ ‘01
[¢1] wr poquioso(] Korasy1og 0¢e SIS | 67 '8
9POD UOISIOA TN Aofoy10y | ¥'2°¢ - 7€ CEACINISY | 67 ‘8
nosodoJ ueqIog Aq SUOISUDIXD Koros{aog 1I'¢ TACINISA | 67 ‘S
o1dso[[Ir) uR[y Aq SUOISUD)XO Aofox1og 0¢ 0AEINISA | 67 ‘8
o1dsor[Iy) Uery 6SOIN | 6
[z] Tt paquioseq AooyI0g 9SOIN | 9
[g] ur paqudse(g KorosIog ¢INISH | €
[¢] a1 paquidseg Koroxrog TINISH | ¥
([1] @9s) [opowt [eoLIdwe-Tes Y AoraIog &SOIN | €
[¢] ut poquse(y Aopositog - UBTIYO1]-9A01) ¢SO | €
‘[opout o1yeIpenb [edISSe[D o) SI SIY T, Kooy - SOSPOI-UeWPIYS ISOIN | T

S9J)ON]

| seouaIRjeYy |

.ﬂwaoﬁw\w@Qi UOISIOA 7

[PPOIN |

ouwre N 7 [PA9T ;

Table 11.1: MOSFET model summary

158 CHAPTER 11. MOSFETS

11.2.1 MOS Level 1

This model is also known as the ‘Shichman-Hodges” model. This is the first model written
and the one often described in the introductory textbooks for electronics. This model is
applicable only to long channel devices. The use of Meyer’s model for the C-V part makes
it non charge conserving.

11.2.2 MOS Level 2

This model tries to overcome the limitations of the Level 1 model addressing several short-
channel effects, like velocity saturation. The implementation of this model is complicated
and this leads to many convergence problems. C-V calculations can be done with the
original Meyer model (non charge conserving).

11.2.3 MOS Level 3

This is a semi-empirical model derived from the Level 2 model. In the 80s this model
has often been used for digital design and, over the years, has proved to be robust. A
discontinuity in the model with respect to the KAPPA parameter has been detected (see
[10]). The supplied fix has been implemented in Spice3f2 and later. Since this fix may
affect parameter fitting, the option badmos3 may be set to use the old implementation (see
the section on simulation variables and the .options line). Ngspice level 3 implementation
takes into account length and width mask adjustments (x1 and xw) and device width
narrowing due to diffusion (wd).

11.2.4 MOS Level 6

This model is described in [2]. The model can express the current characteristics of short-
channel MOSFETs at least down to 0.25 um channel-length, GaAs FET, and resistance
inserted MOSFETs. The model evaluation time is about 1/3 of the evaluation time of
the SPICE3 mos level 3 model. The model also enables analytical treatments of circuits
in short-channel region and makes up for a missing link between a complicated MOSFET
current characteristics and circuit behaviors in the deep submicron region.

11.2.5 Notes on Level 1-6 models

The dc characteristics of the level 1 through level 3 MOSFETS are defined by the device
parameters vto, kp, lambda, phi and gamma. These parameters are computed by ngspice if
process parameters (nsub, tox, ...) are given, but users specified values always override.
vto is positive (negative) for enhancement mode and negative (positive) for depletion
mode N-channel (P-channel) devices.

Charge storage is modeled by three constant capacitors, cgso, cgdo, and cgbo, which
represent overlap capacitances, by the nonlinear thin-oxide capacitance that is distributed
among the gate, source, drain, and bulk regions, and by the nonlinear depletion-layer
capacitances for both substrate junctions divided into bottom and periphery, which vary

11.2. MOSFET MODELS (NMOS/PMOS) 159

as the mj and mjsw power of junction voltage respectively, and are determined by the
parameters cbd, cbs, cj, cjsw, mj, mjsw and pb.

Charge storage effects are modeled by the piecewise linear voltages-dependent capacitance
model proposed by Meyer. The thin-oxide charge-storage effects are treated slightly differ-
ent for the level 1 model. These voltage-dependent capacitances are included only if tox
is specified in the input description and they are represented using Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse
current can be input either as is (in A) or as js (in 4/m?). Whereas the first is an absolute
value the second is multiplied by ad and as to give the reverse current of the drain and
source junctions respectively.

This methodology has been chosen since there is no sense in relating always junction
characteristics with ad and as entered on the device line; the areas can be defaulted. The
same idea applies also to the zero-bias junction capacitances cbd and cbs (in F) on one
hand, and cj (in £/m?) on the other.

The parasitic drain and source series resistance can be expressed as either rd and rs (in
ohms) or rsh (in ohms/sq.), the latter being multiplied by the number of squares nrd
and nrs input on the device line.

MOS level 1, 2, 3 and 6 parameters

Name Parameter Units Default Example
LEVEL Model index - 1
VTO Zero-bias threshold V 0.0 1.0
voltage (Vo)
KP Transconductance Afy? 2.0e-5 3.1e-5
parameter
GAMMA | Bulk threshold parameter VV 0.0 0.37
PHI Surface potential (U) 1% 0.6 0.65
LAMBDA Channel length v 0.0 0.02
modulation (MOS1 and
MOS2 only) ())

RD Drain ohmic resistance Q 0.0 1.0
RS Source ohmic resistance Q 0.0 1.0
CBD Zero-bias B-D junction F 0.0 20fF

capacitance
CBS Zero-bias B-S junction F 0.0 20fF
capacitance
IS Bulk junction saturation A 1.0e-14 1.0e-15
current (Ig)
PB Bulk junction potential V 0.8 0.87
CGSO Gate-source overlap F/m 0.0 4.0e-11
capacitance per meter
channel width

160 CHAPTER 11. MOSFETS
Name Parameter Units Default Example
CGDO Gate-drain overlap E/m 0.0 4.0e-11

capacitance per meter
channel width
CGBO Gate-bulk overlap F/m 0.0 2.0e-11
capacitance per meter
channel width
RSH Drain and source diffusion inl 0.0 10
sheet resistance
CJ Zero-bias bulk junction F/m? 0.0 2.0e-4
bottom cap. per sq-meter
of junction area
MJ Bulk junction bottom - 0.5 0.5
grading coeff.
CJSW Zero-bias bulk junction F/m 0.0 1.0e-9
sidewall cap. per meter of
junction perimeter
MJSW Bulk junction sidewall - (levell)
) 0.33 (level2, 3)
grading coeff.
JS Bulk junction saturation
current
TOX Oxide thickness m 1.0e-7 1.0e-7
NSUB Substrate doping cm ™3 0.0 4.0el5
NSS Surface state density cm 2 0.0 1.0e10
NFS Fast surface state density cm 2 0.0 1.0e10
TPG Type of gate material: +1 - 1.0
opp. to substrate, -1 same
as substrate, 0 Al gate
XJ Metallurgical junction m 0.0 1M
depth
LD Lateral diffusion m 0.0 0.8M
§[0) Surface mobility em?® [V sec 600 700
UCRIT Critical field for mobility V/em 1.0e4 1.0e4
degradation (MOS2 only)
UEXP Critical field exponent in - 0.0 0.1
mobility degradation
(MOS2 only)
UTRA Transverse field coeff. - 0.0 0.3
(mobility) (deleted for
MOS2)
VMAX | Maximum drift velocity of m/s 0.0 5.0e4
carriers
NEFF Total channel-charge - 1.0 5.0
(fixed and mobile)
coefficient (MOS2 only)
KF Flicker noise coefficient - 0.0 1.0e-26
AF Flicker noise exponent - 1.0 1.2

11.2. MOSFET MODELS (NMOS/PMOS) 161

Name Parameter Units Default Example
FC Coefficient for - 0.5
forward-bias depletion
capacitance formula
DELTA Width effect on threshold - 0.0 1.0
voltage (MOS2 and
MOS3)
THETA Mobility modulation v 0.0 0.1
(MOS3 only)
ETA Static feedback (MOS3 - 0.0 1.0
only)
KAPPA Saturation field factor - 0.2 0.5
(MOS3 only)
TNOM Parameter measurement °C 27 50
temperature

11.2.6 MOS Level 9

Documentation is not available..

11.2.7 BSIM Models

Ngspice implements many of the BSIM models developed by Berkeley’s BSIM group.
BSIM stands for Berkeley Short-Channel IGFET Model and groups a class of models that
is continuously updated. BSIM3 (11.2.10) and BSIM4 (11.2.11) are industry standards
for CMOS processes down to 0.15 pm (BSIM3) and below (BSIM4), are very stable and
are supported by model parameter sets from foundries all over the world. BSIM1 and
BSIM2 are obsolete today.

In general, all parameters of BSIM models are obtained from process characterization,
in particular level 4 and level 5 (BSIM1 and BSIM2) parameters can be generated auto-
matically. J. Pierret [4] describes a means of generating a ‘process’ file, and the program
ngproc2mod provided with ngspice converts this file into a sequence of BSIM1 .model
lines suitable for inclusion in an ngspice input file.

Parameters marked below with an * in the 1/w column also have corresponding parameters
with a length and width dependency. For example, vfb is the basic parameter with units
of Volts, and 1vfb and wvfb also exist and have units of Volt-meter.

The formula
P Py

P=Py+ + 11.1
0 Leffective Weffective ()

is used to evaluate the parameter for the actual device specified with

Lef‘fective = Linput - DL (].12)

http://bsim.berkeley.edu/

162 CHAPTER 11. MOSFETS

Weffective = Winput — Dw (1 1 3)

Note that unlike the other models in ngspice, the BSIM models are designed for use
with a process characterization system that provides all the parameters, thus there are no
defaults for the parameters, and leaving one out is considered an error. For an example set
of parameters and the format of a process file, see the SPICE2 implementation notes [3].
For more information on BSIM2, see reference [5]. BSIM3 (11.2.10) and BSIM4 (11.2.11)
represent state of the art for submicron and deep submicron IC design.

11.2.8 BSIM1 model (level 4)

BSIM1 model (the first is a long series) is an empirical model. Developers placed less
emphasis on device physics and based the model on parametrical polynomial equations
to model the various physical effects. This approach pays in terms of circuit simulation
behavior but the accuracy degrades in the submicron region. A known problem of this
model is the negative output conductance and the convergence problems, both related to
poor behavior of the polynomial equations.

BSIM1 (level 4) parameters

Name Parameter Units | l/w
VFB Flat-band voltage Vv *
PHI Surface inversion potential Vv *

K1 Body effect coefficient VV *
K2 Drain/source depletion charge-sharing - *
coefficient
ETA Zero-bias drain-induced barrier-lowering - *
coefficient
MUZ Zero-bias mobility em?® [y sec
DL Shortening of channel wm
DW Narrowing of channel um
U0 Zero-bias transverse-field mobility Uy *
degradation coefficient
Ul Zero-bias velocity saturation coefficient wlv *
X2MZ Sens. of mobility to substrate bias at v=0 | em*/v2.sec
X2E Sens. of drain-induced barrier lowering Vv
effect to substrate bias
X3E Sens. of drain-induced barrier lowering Vv *
effect to drain bias at V. = Vyy

X2U0 Sens. of transverse field mobility 1y *

degradation effect to substrate bias

X2U1 Sens. of velocity saturation effect to pmfy2 *

substrate bias
MUS Mobility at zero substrate bias and at em? [y 2.
‘/ds — V:id

11.2. MOSFET MODELS (NMOS/PMOS) 163

Name Parameter Units | 1/w
X2MS Sens. of mobility to substrate bias at em?fy2see | ¥
Vvds - ‘/dd
X3MS | Sens. of mobility to drain bias at Vi, = Vg | em*/v2sec
X3U1 Sens. of velocity saturation effect on drain pmfy2
bias at Vds=Vdd
TOX Gate oxide thickness wm
TEMP Temperature where parameters were °C
measured
VDD Measurement bias range V
CGDO Gate-drain overlap capacitance per meter Ffm
channel width
CGSO Gate-source overlap capacitance per meter Ffm
channel width
CGBO Gate-bulk overlap capacitance per meter Ffm

channel length
XPART | Gate-oxide capacitance-charge model flag -

NO Zero-bias subthreshold slope coefficient -
NB Sens. of subthreshold slope to substrate bias -
ND Sens. of subthreshold slope to drain bias - *
RSH Drain and source diffusion sheet resistance /g
JS Source drain junction current density Afm2
PB Built in potential of source drain junction V
MJ Grading coefficient of source drain junction -
PBSW | Built in potential of source, drain junction V
sidewall
MJSW | Grading coefficient of source drain junction -
sidewall
CJ Source drain junction capacitance per unit F/m2
area
CJSW | source drain junction sidewall capacitance Flm
per unit length
WDF Source drain junction default width m
DELL Source drain junction length reduction m

xpart = 0 selects a 40/60 drain/source charge partition in saturation, while xpart=1
selects a 0/100 drain/source charge partition. nd, ng, and ns are the drain, gate, and
source nodes, respectively. mname is the model name, area is the area factor, and off
indicates an (optional) initial condition on the device for dc analysis. If the area factor
is omitted, a value of 1.0 is assumed. The (optional) initial condition specification, using
ic=vds,vgs is intended for use with the uic option on the .tran control line, when a
transient analysis is desired starting from other than the quiescent operating point. See
the .ic control line for a better way to set initial conditions.

164 CHAPTER 11. MOSFETS

11.2.9 BSIM2 model (level 5)

This model contains many improvements over BSIM1 and is suitable for analog simulation.
Nevertheless, even BSIM2 breaks transistor operation into several distinct regions and this
leads to discontinuities in the first derivative in C-V and I-V characteristics that can cause
numerical problems during simulation.

11.2.10 BSIMS3 model (levels 8, 49)

BSIMS3 solves the numerical problems of previous models with the introduction of smooth-
ing functions. It adopts a single equation to describe device characteristics in the operating
regions. This approach eliminates the discontinuities in the I-V and C-V characteristics.
The original model, BSIM3 evolved through three versions: BSIM3v1l, BSIM3v2 and
BSIM3v3. Both BSIM3v1 and BSIM3v2 had suffered from many mathematical problems
and were replaced by BSIM3v3. The latter is the only surviving release and has itself a
long revision history.

The following table summarizes the story of this model:

’ Release \ Date \ Notes \ Version flag ‘
BSIM3v3.0 | 10/30/1995 3.0
BSIM3v3.1 | 12/09/1996 3.1
BSIM3v3.2 | 06/16/1998 Revisions available: BSIM3v3.2.2, 3.2,3.2.2,

BSIM3v3.2.3, and BSIM3v3.2.4 3.2.3,3.24
Parallel processing with OpenMP is
available for BSIM3v3.2.4.
BSIM3v3.3 | 07/29/2005 Parallel processing with OpenMP is 3.3.0
available for this model.

BSIM3v2 and 3v3 models has proved for accurate use in 0.18 um technologies. The model
is publicly available as source code form from University of California, Berkeley.

A detailed description is given in the user’s manual available from here .

We recommend that you use only the most recent BSIM3 models (version 3.3.0), because
it contains corrections to all known bugs. To achieve that, change the version parameter
in your modelcard files to

VERSION = 3.3.0.

If no version number is given in the .model card, this (newest) version is selected as the
default.

BSIM3v3.2.4 supports the extra model parameter 1m1t on channel length scaling and is
still used by many foundries today.

The older models will not be supported, they are made available for reference only.

11.2.11 BSIM4 model (levels 14, 54)

This is the newest class of the BSIM family and introduces noise modeling and extrinsic
parasitics. BSIM4, as the extension of BSIM3 model, addresses the MOSFET physical

http://bsim.berkeley.edu/models/bsim3/
http://bsim.berkeley.edu/BSIM4/BSIM3/ftpv330.zip
http://ngspice.sourceforge.net/external-documents/models/bsim330_manual.pdf

11.2. MOSFET MODELS (NMOS/PMOS) 165

effects into sub-100nm regime. It is a physics-based, accurate, scalable, robust and predic-
tive MOSFET SPICE model for circuit simulation and CMOS technology development.
It is developed by the BSIM Research Group in the Department of Electrical Engineer-
ing and Computer Sciences (EECS) at the University of California, Berkeley (see BSIM4
home page). BSIM4 has a long revision history, which is summarized below.

’ Release ‘ Date ‘ Notes ‘ Version flag ‘
BSIM4.0.0 | 03/24/2000
BSIM4.1.0 | 10/11/2000
BSIM4.2.0 | 04/06/2001
BSIM4.2.1 | 10/05/2001 * 4.2.1
BSIM4.3.0 | 05/09/2003 * 4.3.0
BSIM4.4.0 | 03/04/2004 * 4.4.0
BSIM4.5.0 | 07/29/2005 | * ** 4.5.0
BSIM4.6.0 | 12/13/2006
BSIM4.6.5 | 09/09/2009 | * ** 4.6.5
BSIM4.7.0 | 04/08/2011 | * ** 4.7
BSIM4.8.1 | 15/02/2017 | * ** 4.8

*) supported in ngspice, using e.g. the version=<version flag> flag in the parameter
file.

*%) Parallel processing using OpenMP support is available for this model.

Details of any revision are to be found in the Berkeley user’s manuals, a pdf download of
the most recent edition is to be found here.

We recommend that you use only the most recent BSIM4 model (version 4.8.1), because
it contains corrections to all known bugs. To achieve that, change the version parameter
in your modelcard files to

VERSION = 4.8.

If no version number is given in the .model card, this (newest) version is selected as the
default. The older models will typically not be supported, they are made available for
reference only.

11.2.12 EKV2.6 Model

Level 44 model (EKV2.6) is not available in the standard distribution since it has to be
compiled in by using the adms configure flag (see the ADMS section of the ngspice web
site). To obtain the current model code please refer to the EKV2.6 page at github (not
yet tested if compatible to ngspice/adms).

Ngspice currently is offering an older Verilog-A version from 11/2006, contributed by
Ivan Riis Nielsen. The model is coded according to the EPFL Technical Report (revision
IT) [25] available at http://ngspice.sourceforge.net/external-documents/models/
ekv_v262.pdf.

http://bsim.berkeley.edu/models/bsim4/
http://bsim.berkeley.edu/models/bsim4/
http://ngspice.sourceforge.net/external-documents/models/BSIM480_Manual.pdf
http://ngspice.sourceforge.net/admshowto.html
https://github.com/ekv26/model
http://ngspice.sourceforge.net/external-documents/models/ekv_v262.pdf
http://ngspice.sourceforge.net/external-documents/models/ekv_v262.pdf

166 CHAPTER 11. MOSFETS

11.2.13 PSP Model

The PSP model is a compact MOSFET model intended for digital, analogue and RF-
design, which is jointly developed by NXP Semiconductors Research (formerly part of
Philips) and different universities.

PSP is a surface-potential based MOS Model, containing all relevant physical effects to
model present-day and upcoming deep-submicron bulk CMOS technologies:

o mobility reduction

« velocity saturation drain induced barrier lowering DIBL

e gate current

« lateral doping gradient effects

o STT stress

The source/drain junction model, c.q. the JUNCAP2 model, is fully integrated in PSP.
The source code of PSP and the most recent version of this documentation are available
on the the NXP Semiconductors web site: www.nxp.com/models andPSP Summary.

Ngspice has implemented PSP model versions 102.5 (mos model parameter level=45)
and 103.7 (mos model parameter level=69) in its experimental ADMS tree.

11.2.14 BSIMSOI models (levels 10, 58, 55, 56, 57)

BSIMSOI is a SPICE compact model for SOI (Silicon-On-Insulator) circuit design, created
by University of California at Berkeley. This model is formulated on top of the BSIM3
framework. It shares the same basic equations with the bulk model so that the physical
nature and smoothness of BSIM3v3 are retained. Four models are supported in ngspice,
those based on BSIM3 and modeling fully depleted (FD, level 55), partially depleted
(PD, level 57) and both (DD, level 56), as well as the modern BSIMSOI version 4 model
(levels 10, 58). Detailed descriptions are beyond the scope of this manual, but see e.g.
BSIMSOIv4.4 User Manual for a very extensive description of the recent model version.
OpenMP support is available for levels 10, 58, version 4.4.

11.2.15 SOI3 model (level 60)

see literature citation [18] for a description.

11.2.16 HiSIM models of the University of Hiroshima

There are two model implementations available - see also HiSIM Research Center:

1. HiSIM2 model: Surface-Potential-Based MOSFET Model for Circuit Simulation
version 2.8.0 - level 68 (see link to HiSIM2 for source code and manual).

2. HiSIM__HV model: Surface-Potential-Based HV/LD-MOSFET Model for Circuit
Simulation version 1.2.4 and 2.2.0 - level 73 (see link to HiSIM__HV for source code
and manual).

https://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp102p3_summary.pdf
http://bsim.berkeley.edu/models/bsimsoi/
http://ngspice.sourceforge.net/external-documents/models/BSIMSOIv4.4_UsersManual.pdf
https://www.hisim.hiroshima-u.ac.jp/index.php?id=87
http://home.hiroshima-u.ac.jp/usdl/HiSIM2/HiSIM_2.5.1_Release_20110407.zip
http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/C-Code/HiSIM_HV_1.2.2_Release_20110629.zip

11.3. POWER MOSFET MODEL (VDMOS) 167

11.3 Power MOSFET model (VDMOS)

The VDMOS model is a relativly simple power MOS model with 3 terminals drain, gate
and source. Its current equations are partly based on a modified MOS1 model. The
gate-source capacitance is set to a constant value by parameter Cgs. The drain-source
capacitance is evaluated from parameters Cgdmax, Cgdmin, and A. The drain-source ca-
pacitance is that of a parallel pn diode and calculated by Cjo, fc, and m. Leakage and
breakdown are modeled by the parallel pn diodes as well, using is and other param-
eters. A subthreshold current model is available, using a single parameter ksubthres.
Quasi-saturation is modelled with parameters rq and vq. Mtriode may be used here as
well.

The thermal network of the VDMOS model is shown in Fig. 11.1.

D
L |
Tj
Rd Rdio Rthj
Tcase
Power | Rthca
—', DBODY It'(f) |
= /\ T VTemp
] k
ckt->Tem
v P
]
Ith = Ids*Vds + Id*Vrd + Idiod*Vdiod
S

Figure 11.1: VDMOS model including thermal network

This model does not have a level parameter. It is invoked by the VDMOS token preceding
the parameters on the .model line. P-channel or n-channel are selected by the model
parameter PCHAN and NCHAN. If no flag is given, n-channel is the default. Standard
MOS instance parameters W and L are not acknowledged because they are no design
parameters and are not provided by the device manufacturers.

The following ’parameters’ in the .model line are no model parameters, but serve in-
formation purposes for the user: mfg=..., Vds=..., Ron=..., and Qg=... They are
ignored by ngspice.

168

General form:

CHAPTER 11. MOSFETS

MXXXXXXX nd ng ns mname <m=val> <temp=t> <dtemp=t>
.model mname VDMOS <Pchan> <parameters>

Example:

M1 24 2 0 IXTH48P20P
.MODEL IXTH48P20P VDMOS Pchan Vds=200 VT0=-4 KP=10 Lambda=5m
+ Mtriode=0.3 Ksubthres=120m Rs=10m Rd=20m Rds=200e6

+ Cgdmax=6000p Cgdmin=100p A=0.25 Cgs=5000p Cjo=9000p

+ Is=2e-6 Rb=20m BV=200 IBV=250e-6 NBV=4 TT=260e-9

VDMOS instance parameters

Name Parameter Units | Default | Example
m device multiplier - 1 -
off Device initially off - 0

icvds Initial D-S voltage V 0.0
icvgs Initial G-S voltage % 0.0
temp device temperature °C 27 100
dtemp device temperature °C 0.0 50
difference
ic Vector of D-S, G-S V 0.0
voltages
thermal Thermal model switch - -
on/off
VDMOS model parameters

Name Parameter Units Default Example

VDMOS select VDMOS model - must given -

NCHAN nch type transistor - default, if not given -

PCHAN pch type transistor - required, if PMOS -

VTO Zero-bias threshold V 0.0 4
voltage (Vo)
KP Transconductance Afy2 1.0 5.9
parameter
PHI Surface potential V
LAMBDA Channel length v 0.0 0.001
modulation (\)

THETA Vgs influence on mobility Vv 0.0 0.015
RD Drain ohmic resistance Q 0.0 61m
RS Source ohmic resistance Q 0.0 18m
RG Gate ohmic resistance Q 0.0 3

11.3. POWER MOSFET MODEL (VDMOS) 169
Name Parameter Units Default Example
KF Flicker noise coefficient - 0.0
AF Flicker noise exponent - 1.0
TNOM Parameter measurement °C 27 25
temperature
RQ Quasi saturation Q 0.0 0.5
resistance fitting
parameter
VQ Quasi saturation voltage V 0.0 100
fitting parameter
MTRIODE Conductance multiplier in — 1.0 0.8
triode region
SUBSHIFT shift along gate voltage V 0.0
axis in the dual parameter
subthreshold model
KSUBTHRES slope in the single - 0.1 0.27
parameter subthreshold
model
BV Vds breakdown voltage V 00
IBV Current at Vds=bv A 1.0e-10
NBV Vds breakdown emission - 1.0
coefficient
RDS Drain-source shunt Q o0 le7
resistance
RB Body diode ohmic Q 0.0 14m
resistance
N Body diode emission - 1.0 1.1
coefficient
TT Body diode transit time 5 0.0
EG Body diode activation eV 1.11
energy for temperature
effect on IS
XTI Body diode saturation - 3.0 3.2
current temperature
exponent
IS Body diode saturation A le-14 60p
current
VJ Body diode junction Vv 0.8
potential
FC Body diode coefficient for - 0.5

forward-bias depletion
capacitance formula

170 CHAPTER 11. MOSFETS
Name Parameter Units Default Example
CJO Zero-bias body diode F 0.0 1.5n
junction capacitance
M Body diode grading - 0.5 0.6
coefficient
CGDMIN Minimum non-linear G-D F 0.0 10p
capacitance
CGDMAX Maximum non-linear G-D F 0.0 2.45n
capacitance
A Non-linear Cgd - 1 0.3
capacitance parameter
CGS Gate-source capacitance F 0.0 1.2n
TCVTH (VTOTC) | Linear Vth0O temperature 1/oc 0.0 0.0065
coefficient
MU (BEX) Exponent of gain - -1.5 -1.27
temperature dependency
TEXPO Drain resistance rd0 - 1.5
temperature exponent
TEXP1 Drain resistance rd1 - 0.3
temperature exponent
TRD1 Drain resistance linear 1/oc 0.0
temperature coefficient
TRD2 Drain resistance quadratic | 1/(c)? 0.0
temperature coefficient
TRG1 Gate resistance linear 1/°c 0.0
temperature coefficient
TRG2 Gate resistance quadratic | 1/(c)? 0.0
temperature coefficient
TRS1 Source resistance linear 1/ec 0.0
temperature coefficient
TRS2 Source resistance 1/(ecy? 0.0
quadratic temperature
coefficient
TRB1 Body resistance linear 1/°c 0.0
temperature coefficient
TRB2 Body resistance quadratic | 1/¢c)? 0.0
temperature coefficient
TKSUBTHRES1 Linear temperature 1/oc 0.0
coefficient of ksubthres
TKSUBTHRES2 Quadratic temperature 1) 0.0
coefficient of ksubthres
RTHJC Thermal resistance K/w 1.0 0.4
junction-case
CTHJ Thermal capacitance Ik 10e-6 be-3

11.3. POWER MOSFET MODEL (VDMOS) 171

Name Parameter Units Default Example
RTHCA Thermal resistance K/w 1000
case-ambient (w/o
heatsink)

VDMOS electro-thermal model

Power electronic devices behavior the effect of self-heating effect. That means that the
dissipated power has an impact to the electrical behavior of the terminal currents. To
minimize this effect and to protect the element from thermal destruction heat sinks are
supplied to this kind of power devices.

The ngspice VDMOS model has introduced an electro-thermal approach by stamping
additional elements into the circuit matrix and by iteration the additional current control
inside the spice solver.

The transistor now has 5 nodes. Besides D, G, and S we have TJ and TCASE. The
additional nodes must be activated by the device switch THERMAL. Heat is generated
in the MOS channel and peripheral elements like resistors, its temperature is available
and may be measured at node TJ, and is fed back internally into the device equations.
Within the transistor package the heat is flowing from the channel to the metal surface
of the case, at node TCASE. Here you may connect a heat sink, to offer a flow path
for the heat away from the device. The internal heat resistance is RTHJC (junction to
case), a typical data sheet value. The model also includes the heat capacitance CTHJ
of the semiconductor die and package (typically not available in the data sheet, so to be
estimated only).

The following example show the usage of ngspice electro-thermal model including a simple
heat sink:

General form:
MXXXXXXX nd ng ns tj tc mname thermal <m=val> <temp=t> <dtemp=t>
Example:

M1 24 2 0 tj tc IXTH48P20P thermal

rcs tc 1 0.1

csa 1 0 30m

rsa 1 amb 1.3

VTamb tamb 0 25

.MODEL IXTH48P20P VDMOS Pchan Vds=200 VT0=-4 KP=10 Lambda=5bm
+ Mtriode=0.3 Ksubthres=120m Rs=10m Rd=20m Rds=200e6

+ Cgdmax=6000p Cgdmin=100p A=0.25 Cgs=5000p Cjo=9000p

+ Is=2e-6 Rb=20m BV=200 IBV=250e-6 NBV=4 TT=260e-9

+ Rthjc=0.4 Cthj=5e-3

172 CHAPTER 11. MOSFETS

Chapter 12

Mixed-Mode and Behavioral
Modeling with XSPICE

Ngspice implements XSPICE extensions for behavioral and mixed-mode (analog and dig-
ital) modeling. In the XSPICE framework this is referred to as code level modeling.
Behavioral modeling may benefit dramatically because XSPICE offers a means to add
analog functionality programmed in C. Many examples (amplifiers, oscillators, filters ...)
are presented in the following. Even more flexibility is available because you may define
your own models and use them in addition and in combination with all the already exist-
ing ngspice functionality. Digital and mixed mode simulation is sped up significantly by
simulating the digital part in an event driven manner, in that state equations use only a
few allowed states and are evaluated only during switching, and not continuously in time
and signal as in a pure analog simulator.

This chapter describes the predefined models available in ngspice, stemming from the
original XSPICE simulator or being added to enhance the usability. The instructions for
writing new code models are given in Chapt. 28.

To make use of the XSPICE extensions, you need to compile them in. Linux, CYGWIN,
MINGW and other users may add the flag -—enable-xspice to their ./configure com-
mand and then recompile. The pre-built ngspice for Windows distribution has XSPICE
already enabled. For detailed compiling instructions see Chapt. 32.1.

12.1 Code Model Element & .MODEL Cards

12.1.1 Syntax

Ngspice includes a library of predefined ‘Code Models’ that can be placed within any
circuit description in a manner similar to that used to place standard device models.
Code model instance cards always begin with the letter ‘A’, and always make use of a
.MODEL card to describe the code model desired. Section 28 of this document goes into
greater detail as to how a code model similar to the predefined models may be developed,
but once any model is created and linked into the simulator it may be placed using
one instance card and one .MODEL card (note here we conform to the SPICE custom of
referring to a single logical line of information as a ‘card’). As an example, the following

173

174ACHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

uses a predefined ‘gain’ code model taking as an input some value on node 1, multiplies
it by a gain of 5.0, and outputs the new value to node 2. Note that, by convention, input
ports are specified first on code models. Output ports follow the inputs.

Example:

al 1 2 amp
.model amp gain(gain=5.0)

In this example the numerical values picked up from single-ended (i.e. ground referenced)
input node 1 and output to single-ended output node 2 will be voltages, since in the
Interface Specification File for this code model (i.e., gain), the default port type is spec-
ified as a voltage (more on this later). However, if you didn’t know this, the following
modifications to the instance card could be used to insure it:

Example:

al %v(1) %v(2) amp
.model amp gain(gain=5.0)

The specification %v preceding the input and output node numbers of the instance card
indicate to the simulator that the inputs to the model should be single-ended voltage
values. Other possibilities exist, as described later.

Some of the other features of the instance and .MODEL cards are worth noting. Of particu-
lar interest is the portion of the .MODEL card that specifies gain=5.0. This portion of the
card assigns a value to a parameter of the ‘gain’ model. There are other parameters that
can be assigned values for this model, and in general code models will have several. In
addition to numeric values, code model parameters can take non-numeric values (such as
TRUE and FALSE), and even vector values. All of these topics will be discussed at length
in the following pages. In general, however, the instance and .MODEL cards that define a
code model will follow the abstract form described below. This form illustrates that the
number of inputs and outputs and the number of parameters that can be specified is rel-
atively open-ended and can be interpreted in a variety of ways (note that angle-brackets
‘<’ and ‘>’ enclose optional inputs):

12.1. CODE MODEL ELEMENT & .MODEL CARDS 175

Example:

AXXXXXXX <%v,%i,%vd,%id,%g,%gd,%h,%hd, or %d>
+ <[> <~><Yv,%i,%vd,%id,%g,%gd,%h,%hd, or %d>
<NIN1 or +NIN1 -NIN1 or "null">
<~>...<NIN2.. <]> >
<hv,%i,hvd,%id ,%g,%hegd ,%h,%hd ,%d or %vnam>
<[> <~><Yv,%i,%vd,%id ,%g,%hegd ,%h,%hd,

or %d><NOUT1 or +NOUT1 -NOUT1>
<~>...<NOUT2.. <]>>
+ MODELNAME

+
+
+
+

+

.MODEL MODELNAME MODELTYPE
+ <(PARAMNAME1= <[> VAL1 <VAL2... <]>> PARAMNAME2..>)>

Square brackets ([]) are used to enclose vector input nodes. In addition, these brackets
are used to delineate vectors of parameters.

The literal string ‘null’, when included in a node list, is interpreted as no connection at
that input to the model. ‘Null’ is not allowed as the name of a model’s input or output if
the model only has one input or one output. Also, ‘null’ should only be used to indicate a
missing connection for a code model; use on other XSPICE component is not interpreted
as a missing connection, but will be interpreted as an actual node name.

The tilde, ‘~’, when prepended to a digital node name, specifies that the logical value of
that node be inverted prior to being passed to the code model. This allows for simple
inversion of input and output polarities of a digital model in order to handle logically
equivalent cases and others that frequently arise in digital system design. The following
example defines a NAND gate, one input of which is inverted:

al [~1 2] 3 nandl
.model nandl d_nand (rise_delay=0.1 fall_delay=0.2)

The optional symbols %v, %i, %vd, etc. specify the type of port the simulator is to expect
for the subsequent port or port vector. The meaning of each symbol is given in Table
12.1.

The symbols described in Table 12.1 may be omitted if the default port type for the model
is desired. Note that non-default port types for multi-input or multi-output (vector) ports
must be specified by placing one of the symbols in front of EACH vector port. On the
other hand, if all ports of a vector port are to be declared as having the same non-default
type, then a symbol may be specified immediately prior to the opening bracket of the
vector. The following examples should make this clear:

Example 1: - Specifies two differential voltage connections, one

176CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Port Type Modifiers

Modifier \ Interpretation

%ov represents a single-ended voltage port - one node name or number is
expected for each port.
%oi represents a single-ended current port - one node name or number is

expected for each port.

%g represents a single-ended voltage-input, current-output (VCCS) port -
one node name or number is expected for each port. This type of port is
automatically an input/output.

%h represents a single-ended current-input, voltage-output (CCVS) port -
one node name or number is expected for each port. This type of port is
automatically an input/output.

%d represents a digital port - one node name or number is expected for each
port. This type of port may be either an input or an output.

%vnam | represents the name of a voltage source, the current through which is
taken as an input. This notation is provided primarily in order to allow
models defined using SPICE2G6 syntax to operate properly in XSPICE.

Yovd represents a differential voltage port - two node names or numbers are
expected for each port.

%id represents a differential current port - two node names or numbers are
expected for each port.
Yogd represents a differential VCCS port - two node names or numbers are

expected for each port.

%hd represents a differential CCVS port - two node names or numbers are
expected for each port.

Table 12.1: Port Type Modifiers

12.1. CODE MODEL ELEMENT & .MODEL CARDS 177

to nodes 1 & 2, and one to nodes 3 & 4.
%vd [1 2 3 4]

Example 2: - Specifies two single-ended connections to node 1 and
at node 2, and one differential connection to
nodes 3 & 4.

%v [1 2 %vd 3 4]

Example 3: - Identical to the previous example...parenthesis
are added for additional clarity.

% [1 2 %vd(3 4)]

Example 4: - Specifies that the node numbers are to be treated in the
default fashion for the particular model.
If this model had ‘%v" as a default for this
port, then this notation would represent four single-ended
voltage connections.

[1 2 3 4]

The parameter names listed on the .MODEL card must be identical to those named in the
code model itself. The parameters for each predefined code model are described in detail
in Sections 12.2 (analog), 12.3 (Hybrid, A/D) and 12.4 (digital). The steps required in
order to specify parameters for user-defined models are described in Chapter 28.

12.1.2 Examples

The following is a list of instance card and associated .MODEL card examples showing use
of predefined models within an XSPICE deck:

al 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0 out_offset=-0.01)

a2 %il1 2] 3 suml
.model suml summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)

a2l %i[1 %vd(2 5) 7 10] 3 sum2
.model sum2 summer (out_gain=10.0)

ab 1 2 1limitb

.model limith limit(in_offset=0.1 gain=2.5

+ out_lower_limit=-5.0 out_upper_limit=5.0 limit_range=0.10
+ fraction=FALSE)

a7 2 %id(4 7) xfer_cntlil

178CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

.model xfer_cntll pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)

a8 3 %gd(6 7) switch3
.model switch3 aswitch(cntl off=0.0 cntl on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE)

12.1.3 Search path for file input

Several code models (filesource 12.2.8, d_source 12.4.21, d_state 12.4.18) call addi-
tional files for supply of input data. A call to file="path/filename" (or input_ file=,
state_file=) in the .model card will start a search sequence for finding the file. path
may be an absolute path. If path is omitted or is a relative path, filename is looked for
according to the following search list:

Infile_Path/<path/filename> (Infile Path is the path of the input file *.sp containing
the netlist)

NGSPICE_INPUT DIR/<path/filename> (where an additional path is set by the environ-
mental variable)

<path/filename> (where the search is relative to the current directory (OS dependent))

12.2 Analog Models

The following analog models are supplied with XSPICE. The descriptions included consist
of the model Interface Specification File and a description of the model’s operation. This
is followed by an example of a simulator-deck placement of the model, including the
.MODEL card and the specification of all available parameters.

12.2.1 Gain
NAME TABLE:
C_Function Name: cm_gain
Spice_Model Name: gain
Description: "A simple gain block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no

Vector.Bounds: - -
Null.Allowed: no no

12.2. ANALOG MODELS 179

PARAMETER_TABLE:

Parameter_Name: in_offset gain out_offset
Description: "input offset" "gain" "output offset"
Data_Type: real real real
Default_Value: 0.0 1.0 0.0

Limits: - - -

Vector: no no no
Vector_Bounds: - - -

Null Allowed: yes yes yes

Description: This function is a simple gain block with optional offsets on the input and
the output. The input offset is added to the input, the sum is then multiplied by
the gain, and the result is produced by adding the output offset. This model will
operate in DC, AC, and Transient analysis modes.

Example:

al 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0
+ out_offset=-0.01)

12.2.2 Summer

NAME_TABLE:

C_Function_Name: Cm_summer

Spice_Model Name: summer

Description: "A summer block"
PORT_TABLE:

Port Name: in out
Description: "input vector" "output"
Direction: in out
Default_Type: \ v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: yes no
Vector_Bounds: - -

Null Allowed: no no

PARAMETER_TABLE:

Parameter Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real

Default Value: 0.0 1.0

Limits: - -

180CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector:
Vector Bounds:
Null Allowed:

PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

yes

yes

out_gain
"output gain
real

1.0

n

no

yes

yes
in
yes

out_offset
"output offset"
real

0.0

no

yes

Description: This function is a summer block with 2-to-N input ports. Individual gains
and offsets can be applied to each input and to the output. Each input is added to
its respective offset and then multiplied by its gain. The results are then summed,

multiplied by the output gain and added to the output offset.
operate in DC, AC, and Transient analysis modes.

Example usage

a2 [1 2] 3 suml

.model suml summer (in_offset=[0.1
+ out_gain=5.0 out_offset=-0.01)

12.2.3 Multiplier

NAME_TABLE:
C_Function_Name:

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:

cm_mult
mult
"multiplier block"

in

"input vector"
in

v
[v,vd,i,id,vnam]
yes

(2 -]

no

in_offset

"input offset vector"

real

-0.2]

This model will

in_gain=[2.0 1.0]

out
"output"
out

\'%
[v,vd,i,id]

no

no

in_gain
"input gain vector"
real

12.2. ANALOG MODELS

Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

0.0
yes
in

yes

out_gain
"output gain"
real

1.0

no

yes

1.0
yes
in

yes

out_offset
"output offset"
real

0.0

no

yes

181

Description: This function is a multiplier block with 2-to-N input ports. Individual
gains and offsets can be applied to each input and to the output.
is added to its respective offset and then multiplied by its gain. The results are
multiplied along with the output gain and are added to the output offset. This

model will operate in DC, AC, and Transient analysis modes.

Each input

However, in ac

analysis it is important to remember that results are invalid unless only one input
of the multiplier is connected to a node that i connected to an AC signal (this is
exemplified by the use of a multiplier to perform a potentiometer function: one

input is DC, the other carries the AC signal).

Example SPICE Usage:

a3 [1 2 3] 4 sigmult
.model sigmult mult(in_offset=[0.1 0.1 -0.1]
+ in_gain=[10.0 10.0 10.0] out_gain=5.0 out_offset=0.05)

12.2.4 Divider

NAME TABLE:
C_Function Name:
Spice_Model Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:

cm_divide
divide
"divider block"

num
"numerator"

in

v
[v,vd,i,id,vnam]

no

no

den
"denominator"
in

v
[v,vd,i,id,vnam]

no

no

out
"output"
out

v
[v,vd,i,id]

no

no

182CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

PARAMETER_TABLE:

Parameter Name: num offset num_gain
Description: "numerator offset" "numerator gain"
Data_Type: real real
Default Value: 0.0 1.0
Limits: - -
Vector: no no
Vector Bounds: - -

Null_ Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: den_offset den_gain
Description: "denominator offset" "denominator gain'
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: den_lower_limit

Description: "denominator lower limit"
Data_Type: real

Default_Value: 1.0e-10

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter_Name: den_domain

Description: "denominator smoothing domain"
Data_Type: real

Default_Value: 1.0e-10

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default_Value: false

Limits: -

Vector: no

Vector Bounds: -

Null_ Allowed: yes

PARAMETER_TABLE:

Parameter Name: out_gain out_offset

Description: "output gain" "output offset"

12.2. ANALOG MODELS 183

Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null Allowed: yes yes

Description: This function is a two-quadrant divider. It takes two inputs; num (nu-

merator) and den (denominator). Divide offsets its inputs, multiplies them by their
respective gains, divides the results, multiplies the quotient by the output gain, and
offsets the result. The denominator is limited to a value above zero via a user spec-
ified lower limit. This limit is approached through a quadratic smoothing function,
the domain of which may be specified as a fraction of the lower limit value (default),
or as an absolute value. This model will operate in DC, AC and Transient analysis
modes. However, in ac analysis it is important to remember that results are invalid
unless only one input of the divider is connected to a node that is connected to an
ac signal (this is exemplified by the use of the divider to perform a potentiometer
function: one input is de, the other carries the ac signal).

Example SPICE Usage:

ad 1 2 4 divider

.model divider divide(num_offset=0.1 num_gain=2.5 den_offset=-0.1
+ den_gain=5.0 den_lower_limit=1le-5 den_domain=1e-6
+ fraction=FALSE out_gain=1.0 out_offset=0.0)

12.2.5 Limiter

NAME_TABLE:

C_Function_Name: cm_limit

Spice_Model Name: limit

Description: "limit block"

PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: \ v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter Name: in offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no

Vector_Bounds:

184CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: out lower 1limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: 0.0 1.0

Limits: - -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: limit_range

Description: "upper & lower smoothing range"
Data_Type: real

Default_Value: 1.0e-6

Limits: -

Vector: no

Vector Bounds: -

Null_ Allowed: yes

PARAMETER_TABLE:

Parameter Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default Value: FALSE

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

Description: The Limiter is a single input, single output function similar to the Gain
Block. However, the output of the Limiter function is restricted to the range speci-
fied by the output lower and upper limits. This model will operate in DC, AC and
Transient analysis modes. Note that the limit range is the value below the upper
limit and above the lower limit at which smoothing of the output begins. For this
model, then, the limit range represents the delta with respect to the output level at
which smoothing occurs. Thus, for an input gain of 2.0 and output limits of 1.0 and
-1.0 volts, the output will begin to smooth out at +£0.9 volts, which occurs when
the input value is at 4+0.4.

Example SPICE Usage:

ab 1 2 1limith

.model 1limit5 limit(in_offset=0.1 gain=2.5 out_lower_limit=-5.0
+ out_upper_limit=5.0 limit_range=0.10 fraction=FALSE)

12.2.6 Controlled Limiter

NAME_TABLE:
C_Function_Name: cm_climit

12.2. ANALOG MODELS

Spice_Model Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

climit

185

"controlled limiter block"

in

n 1nput n

in

v
[v,vd,i,id,vnam]
no

no

cntl lower

"lower limit control input"

in

v
[v,vd,i,id,vnam]

no

no

in offset
"input offset"
real

0.0

no

yes

upper_delta

"output upper delta"
real

0.0

no

yes

limit_range

"upper & lower sm. range"

real
1.0e-6

no

yes

cntl_upper

"upper lim. control input"
in

v

[v,vd,i,id,vnam]

no

no

out
"output"

out

\'
[v,vd,i,id]

no

no

gain
llgainll
real
1.0

no

yes

lower_delta
"output lower delta"

real
0.0
no
yes
fraction
"smoothing %/abs switch"
boolean
FALSE
no
yes

Description: The Controlled Limiter is a single input, single output function similar

186CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

to the Gain Block. However, the output of the Limiter function is restricted to
the range specified by the output lower and upper limits. This model will oper-
ate in DC, AC, and Transient analysis modes. Note that the limit range is the
value below the cntl__upper limit and above the cntl _lower limit at which smooth-
ing of the output begins (minimum positive value of voltage must exist between the
entl_upper input and the entl_lower input at all times). For this model, then, the
limit range represents the delta with respect to the output level at which smooth-
ing occurs. Thus, for an input gain of 2.0 and output limits of 1.0 and -1.0 volts,
the output will begin to smooth out at 4+0.9 volts, which occurs when the input
value is at +0.4. Note also that the Controlled Limiter code tests the input val-
ues of entl _upper and cntl_lower to make sure that they are spaced far enough
apart to guarantee the existence of a linear range between them. The range is cal-
culated as the difference between (cntl__upper — upper__delta — limit_range) and
(entl_lower + lower__delta + limit_range) and must be greater than or equal to
zero. Note that when the limit range is specified as a fractional value, the limit
range used in the above is taken as the calculated fraction of the difference between
entl__upper and cntl_lower. Still, the potential exists for too great a limit range
value to be specified for proper operation, in which case the model will return an
error message.

Example SPICE Usage:
a6 3 6 8 4 varlimit

.model varlimit climit(in_offset=0.1 gain=2.5 upper_delta=0.0
+ lower_delta=0.0 limit_range=0.10 fraction=FALSE)

12.2.7 PWL Controlled Source

NAME_TABLE:
C_Function Name: cm_pwl
Spice_Model Name: pwl

Description: "piecewise linear controlled source"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: \ v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no

Vector Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: X_array y_array
Description: "x-element array" "y-element array"
Data_Type: real real

Default Value:
Limits:

12.2. ANALOG MODELS

Vector: yes yes
Vector_ Bounds: [2 -] [2 -]
Null Allowed: no no
PARAMETER_TABLE:

Parameter Name: input_domain fraction

Description: "input sm. domain" "smoothing %/abs switch"
Data_Type: real boolean

Default_Value: 0.01 TRUE

Limits: [1le-12 0.5] -

Vector: no no

Vector Bounds: - -

Null Allowed: yes yes

STATIC_VAR_TABLE:
Static_Var_Name:
Data_Type:

last_x_value
pointer

187

Description: "iteration holding variable for limiting"

Description: The Piece-Wise Linear Controlled Source is a single input, single output
function similar to the Gain Block. However, the output of the PWL Source is
not necessarily linear for all values of input. Instead, it follows an I/O relationship
specified by you via the x_array and y_array coordinates. This is detailed below.
The x_array and y_array values represent vectors of coordinate points on the x
and y axes, respectively. The x_array values are progressively increasing input co-
ordinate points, and the associated y_array values represent the outputs at those
points. There may be as few as two (x_array[n|, y_array[n]) pairs specified, or
as many as memory and simulation speed allow. This permits you to very finely
approximate a non-linear function by capturing multiple input-output coordinate
points.

Two aspects of the PWL Controlled Source warrant special attention. These are
the handling of endpoints and the smoothing of the described transfer function near
coordinate points

In order to fully specify outputs for values of in outside of the bounds of the
PWL function (i.e., less than x_array[0] or greater than x_array[n|, where n is
the largest user-specified coordinate index), the PWL Controlled Source model ex-
tends the slope found between the lowest two coordinate pairs and the highest two
coordinate pairs. This has the effect of making the transfer function completely
linear for in less than x_array[0] and in greater than x_array[n|. It also has the
potentially subtle effect of unrealistically causing an output to reach a very large or
small value for large inputs. You should thus keep in mind that the PWL Source
does not inherently provide a limiting capability.

In order to diminish the potential for non-convergence of simulations when using the
PWL block, a form of smoothing around the x_array, y_array coordinate points
is necessary. This is due to the iterative nature of the simulator and its reliance on
smooth first derivatives of transfer functions in order to arrive at a matrix solution.
Consequently, the input_domain and fraction parameters are included to allow
you some control over the amount and nature of the smoothing performed.
Fraction is a switch that is either TRUE or FALSE. When TRUE (the default
setting), the simulator assumes that the specified input domain value is to be in-
terpreted as a fractional figure. Otherwise, it is interpreted as an absolute value.

188CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Thus, if fraction=TRUE and input_domain=0.10, The simulator assumes that
the smoothing radius about each coordinate point is to be set equal to 10% of the
length of either the x_array segment above each coordinate point, or the x_array
segment below each coordinate point. The specific segment length chosen will be
the smallest of these two for each coordinate point.

On the other hand, if fraction=FALSE and input=0.10, then the simulator will
begin smoothing the transfer function at 0.10 volts (or amperes) below each x_array
coordinate and will continue the smoothing process for another 0.10 volts (or am-
peres) above each x_array coordinate point. Since the overlap of smoothing do-
mains is not allowed, checking is done by the model to ensure that the specified
input domain value is not excessive.

One subtle consequence of the use of the fraction=TRUE feature of the PWL
Controlled Source is that, in certain cases, you may inadvertently create extreme
smoothing of functions by choosing inappropriate coordinate value points. This can
be demonstrated by considering a function described by three coordinate pairs, such
as (-1,-1), (1,1), and (2,1). In this case, with a 10% input_domain value specified
(fraction=TRUE, input_domain=0.10), you would expect to see rounding occur
between in=0.9 and in=1.1, and nowhere else. On the other hand, if you were to
specify the same function using the coordinate pairs (-100,-100), (1,1) and (201,1),
you would find that rounding occurs between in=-19 and in=21. Clearly in the
latter case the smoothing might cause an excessive divergence from the intended
linearity above and below in=1.

Example SPICE Usage:
a7 2 4 xfer cntll

.model xfer_cntll pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)

12.2.8 Filesource (PWL sourced from file)
NAME_TABLE:

C_Function_Name:

Spice_Model Name:

cm_filesource
filesource

Description: "File Source"
PORT_TABLE:

Port_Name: out
Description: "output"
Direction: out
Default_Type: v
Allowed_Types: [v,vd,i,id]
Vector: yes

Vector Bounds: (1 -]

Null Allowed: no
PARAMETER_TABLE:

Parameter_ Name: timeoffset timescale

12.2. ANALOG MODELS

Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

"time offset"
real
0.0

no

yes

timerelative
"relative time"
boolean

FALSE

no

yes

amploffset
"ampl offset"
real

yes
(1 -]

yes

file
"file name"
string

"filesource.txt"

no

yes

189

"timescale"
real
1.0

no

yes

amplstep

"step amplitude"
boolean

FALSE

no

yes

amplscale
"amplscale"
real

yes
(1 -]

yes

Description: The File Source is similar to the Piece-Wise Linear (PWL) Source, except
that the waveform data is read from a file instead of being taken from parameter
vectors. The file format is line oriented ASCII. ‘#" and ‘;’ are comment characters;
all characters from a comment character until the end of the line are ignored. Each
line consists of two or more real values. The first value is the time; subsequent
values correspond to the outputs. Values are separated by spaces. Time values are
absolute and must be monotonically increasing, unless timerelative is set to TRUE,
in which case the values specify the interval between two samples and must be
positive. Waveforms may be scaled and shifted in the time dimension by setting

timescale and timeoffset.

Amplitudes can also be scaled and shifted using amplscale and amploffset. Am-
plitudes are normally interpolated between two samples, unless amplstep is set to

TRUE.

190CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Note: The file named by the parameter filename in file="filename" is sought after
according to a search list described in12.1.3.

Example SPICE Usage:
a8 %vd([1 0 2 0]) filesrc

.model filesrc filesource (file="sine.m" amploffset=[0 O] amplscale=[1 1]
+ timeoffset=0 timescale=1
+ timerelative=false amplstep=false)

Example input file:

name: sine.m

two output ports

column 1: time

columns 2, 3: values
001
3.90625e-09 0.02454122852291229 0.9996988186962042
7.8125e-09 0.04906767432741801 0.9987954562051724
1.171875e-08 0.07356456359966743 0.9972904566786902

12.2.9 multi__input_ pwl block

NAME TABLE:
C_Function_Name:
Spice_Model Name:

cm_multi_input_pwl
multi_input_pwl

Description: "multi_input_pwl block"
PORT_TABLE:

Port_Name: in out
Description: "input array" "output"
Direction: in out
Default_Type: vd vd
Allowed _Types: [vd,id] [vd,id]
Vector: yes no
Vector Bounds: [2 -] -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_ Name: X y
Description: "x array" "y array"
Data_Type: real real
Default_Value: 0.0 0.0
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null Allowed: no no

PARAMETER_TABLE:

12.2. ANALOG MODELS 191

Parameter Name: model
Description: "model type"
Data_Type: string
Default_Value: "and"
Limits: -

Vector: no

Vector Bounds: -

Null Allowed: yes

Description: Multi-input gate voltage controlled voltage source that supports and or
or gating. The x’s and y’s represent the piecewise linear variation of output (y)
as a function of input (x). The type of gate is selectable by the parameter model.
In case the model is and, the smallest input determines the output value (i.e. the
and function). In case the model is or, the largest input determines the output
value (i.e. the or function). The inverse of these functions (i.e. nand and nor) is
constructed by complementing the y array.

Example SPICE Usage:
a82 [1 02 030] 7 0 pwlm

.model pwlm multi_input_pwl((x=[-2.0 -1.0 2.0 4.0 5.0]
+ y=[-0.2 -0.2 0.1 2.0 10.0]
+ model="and")

12.2.10 Analog Switch
NAME_TABLE:
C_Function_Name: cm_aswitch
Spice_Model Name: aswitch
Description: "analog switch"
PORT_TABLE:
Port Name: cntl_in out
Description: "input" "resistive output"
Direction: in out
Default_Type: \ gd
Allowed_Types: [v,vd,i,id] [gd]
Vector: no no
Vector_Bounds: - -
Null Allowed: no no
PARAMETER_TABLE:
Parameter Name: cntl off cntl on
Description: "control ‘off’ value" "control ‘on’ value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no

Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_off log

192CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "off resistance" "log/linear switch"

Data_Type: real boolean

Default Value: 1.0e12 TRUE

Limits: - -

Vector: no no

Vector_Bounds: - -

Null Allowed: yes yes

PARAMETER_TABLE:

Parameter Name: r on limit

Description: "on resistance" "set upper and lower
limits to resistance"

Data_Type: real boolean

Default_Value: 1.0 false

Limits: - -

Vector: no no

Vector Bounds: - -

Null_Allowed: yes yes

Description: The Analog Switch is a resistor that varies either logarithmically or lin-
early between specified values of a controlling input voltage or current. Note that
the input is not internally limited when parameter 1imit is not given. Therefore, if
the controlling signal exceeds the specified OFF state or ON state value, the resis-
tance may become excessively large or excessively small (in the case of logarithmic
dependence), or may become negative (in the case of linear dependence). For the
experienced user, these excursions may prove valuable for modeling certain devices,
but in most cases you are advised to add limiting of the controlling input if the
possibility of excessive control value variation exists. Alternatively you may set
the parameter 1imit to TRUE. Then the resulting resistance is limited to r_on or
r_ off if the controlling voltage exceeds the given boundaries cntl_on or cntl_off.
At these boundaries sharp edges in the R(control) characteristics will occur which
may lead to convergence problems.

Example SPICE Usage:
a8 3 %gd(6 7) switch3

.model switch3 aswitch(cntl off=0.0 cntl on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE 1limit=TRUE)

12.2.11 Alternative Analog Switch

NAME_TABLE:
C_Function_Name:
Spice_Model Name:
Description:

cm_pswitch
pswitch
"analog switch alternative"

12.2. ANALOG MODELS

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

cntl_in
"input"
inout
gd
[g,gd]
no

no

cntl off
"control
real
0.0

‘off’ value"

no

yes

r_off

"off resistance"
real

1.0e12

no

yes

r on
"on resistance"
real
1.0

no

yes

out

"resistive output"
inout

gd

[gd]

no

no

cntl on
"control
real
1.0

‘on’ value"

no

yes

log

"log/linear switch"
boolean

TRUE

no

yes

r_cntl_in

"input resistance for control terminal'

real
lel2

no

yes

193

Description: The Alternative Analog Switch is a resistor that varies either logarithmi-

cally or linearly between specified values of a controlling input voltage or current.
An input resistance r_cntl_in may be specified. The output resistance is limited
to r_on or r_off. At the control boundaries cntl_on or cntl_off the R(control)

characteristics is slightly rounded. The characteristics is PSPICE compatibel.

Example SPICE Usage:

a9 13 %gd(16 17) switchd

.model switch4 pswitch(cntl off=0.0 cntl on=5.0 r_off=1e6
r_on=10.0 r_cntl_in=lell log=TRUE)

+

194CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

12.2.12 Zener Diode

NAME TABLE:
C_Function_Name:

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

STATIC_VAR_TABLE:

Static_Var_Name:
Data_Type:
Description:

cm_zener
zener
"zener diode"

"zener"
inout

[gd]

no
no

v_breakdown
"breakdown voltage"
real

[1.0e-6 1.0e6]

no

no

i_sat

"saturation current"
real

1.0e-12

[1.0e-15 -]

no

yes

limit_switch

i _breakdown
"breakdown current"
real

2.0e-2

[1.0e-9 -]

no

yes

n_forward

"forward emission coefficient"
real

1.0

(0.1 10]

no

yes

"switch for on-board limiting (convergence aid)"

boolean
FALSE

no

yes

previous_voltage
pointer

"iteration holding variable for limiting"

Description: The Zener Diode models the DC characteristics of most zeners. This model
differs from the Diode/Rectifier by providing a user-defined dynamic resistance in

12.2. ANALOG MODELS 195

the reverse breakdown region. The forward characteristic is defined by only a single
point, since most data sheets for zener diodes do not give detailed characteristics in
the forward region.

The first three parameters define the DC characteristics of the zener in the break-
down region and are usually explicitly given on the data sheet.

The saturation current refers to the relatively constant reverse current that is pro-
duced when the voltage across the zener is negative, but breakdown has not been
reached. The reverse leakage current determines the slight increase in reverse cur-
rent as the voltage across the zener becomes more negative. It is modeled as a
resistance parallel to the zener with value v breakdown / i rev.

Note that the limit switch parameter engages an internal limiting function for the
zener. This can, in some cases, prevent the simulator from converging to an unre-
alistic solution if the voltage across or current into the device is excessive. If use
of this feature fails to yield acceptable results, the convlimit option should be tried
(add the following statement to the SPICE input deck: .options convlimit)

Example SPICE Usage:
a9 3 4 vrefl0

.model vrefl0 zener(v_breakdown=10.0 i_breakdown=0.02
+ r_breakdown=1.0 i_rev=1le-6 i_sat=1e-12)

12.2.13 Current Limiter

NAME_TABLE:

C_Function_Name: cm_ilimit

Spice_Model Name: ilimit

Description: "current limiter block"
PORT_TABLE:

Port Name: in pos_pwr
Description: "input" "positive power supply"
Direction: in inout
Default_Type: v g
Allowed_Types: [v,vd] [g,gd]
Vector: no no
Vector Bounds: - -
Null_Allowed: no yes
PORT_TABLE:

Port Name: neg_pwr out
Description: "'negative power supply" "output"
Direction: inout inout
Default_Type: g g
Allowed Types: [g,gd] [g,gdl
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes no

PARAMETER_TABLE:

196CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:

Data_Type:
Default_Value:
Limits:
Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:

in offset
"input offset"
real

0.0

no

yes

r_out_source
"sourcing resistance"
real

1.0

[1.0e-9 1.0e9]

no

yes

i limit source

"current sourcing limit"
real

[1.0e-12 -]

no

yes

i_limit_sink

"current sinking limit"
real

[1.0e-12 -]

no

yes

V_pwr_range
"upper & lower power
supply smoothing range"

real

1.0e-6

[1.0e-15 -]

no

yes

i_sink_range

gain
llgainll
real
1.0

no

yes

r_out_sink

"sinking resistance"
real

1.0

[1.0e-9 1.0e9]

no

yes

i_source_range
"'sourcing current
smoothing range"

real

1.0e-9

[1.0e-15 -]

no

yes

"sinking current smoothing range"

12.2. ANALOG MODELS 197

Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-15 -]
Vector: no
Vector_Bounds: -

Null Allowed: yes
PARAMETER_TABLE:

Parameter_Name: r_out_domain
Description: "internal/external voltage delta smoothing range"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-15 -]
Vector: no
Vector_Bounds: -

Null Allowed: yes

Description: The Current Limiter models the behavior of an operational amplifier or
comparator device at a high level of abstraction. All of its pins act as inputs; three
of the four also act as outputs. The model takes as input a voltage value from the
in connector. It then applies an offset and a gain, and derives from it an equivalent
internal voltage (veq), which it limits to fall between pos_pwr and neg_pwr. If vegq
is greater than the output voltage seen on the out connector, a sourcing current
will flow from the output pin. Conversely, if the voltage is less than wvout, a sinking
current will flow into the output pin.

Depending on the polarity of the current flow, either a sourcing or a sinking re-
sistance value (r_out_source, r_out_sink) is applied to govern the vout/i_out
relationship. The chosen resistance will continue to control the output current until
it reaches a maximum value specified by either i_limit_source or i_limit_sink.
The latter mimics the current limiting behavior of many operational amplifier out-
put stages.

During all operation, the output current is reflected either in the pos_pwr connector
current or the neg_pwr current, depending on the polarity of i_out. Thus, realistic
power consumption as seen in the supply rails is included in the model.

The user-specified smoothing parameters relate to model operation as follows: v_pwr_range
controls the voltage below vpos_pwr and above vneg_pwr inputs beyond which
veq = gain (vVin + Voffser) is smoothed; i_source_range specifies the current be-
low i _limit source at which smoothing begins, as well as specifying the cur-
rent increment above i_out=0.0 at which i_pos_pwr begins to transition to zero;
i_sink_range serves the same purpose with respect toi_limit_sink and i_neg_pwr
that i_source_range serves for i_limit_source and i_pos_pwr; r_out_domain
specifies the incremental value above and below (veq-vout)=0.0 at which r_out will
be set to r_out_source and r_out_sink, respectively. For values of (veq-vout)
less than r_out_domain and greater than -r_out_domain, r_out is interpolated
smoothly between r_out_source and r_out_sink.

Example SPICE Usage:
aldo 3 10 20 4 amp3

198CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

.model amp3 ilimit(in_offset=0.0 gain=16.0 r_out_source=1.0
r out_sink=1.0 i_limit_source=1le-3
i_limit_sink=10e-3 v_pwr_range=0.2
i_source_range=le-6 i_sink_range=le-6
r_out_domain=1e-6)

+ + + +

12.2.14 Hysteresis Block

NAME TABLE:
C_Function_Name: cm_hyst
Spice_Model Name: hyst

Description: "hysteresis block"

PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v

Allowed _Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no

Vector Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter Name: in low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0

Limits: - -

Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"
Data_Type: real real
Default_Value: 0.1 0.0

Limits: [0.0 -] -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes

PARAMETER TABLE:
Parameter Name:

out_upper_limit

input_domain

Description: "output upper limit" "input smoothing domain"
Data_Type: real real

Default_Value: 1.0 0.01

Limits: - -

Vector: no no

Vector_Bounds:

12.2. ANALOG MODELS 199

Null Allowed: yes yes

PARAMETER_TABLE:

Parameter_Name: fraction

Description: "smoothing fraction/absolute value switch"
Data_Type: boolean

Default_Value: TRUE

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

Description: The Hysteresis block is a simple buffer stage that provides hysteresis of the
output with respect to the input. The in low and in high parameter values specify
the center voltage or current inputs about which the hysteresis effect operates. The
output values are limited to out lower limit and out upper limit. The value of hyst
is added to the in low and in high points in order to specify the points at which
the slope of the hysteresis function would normally change abruptly as the input
transitions from a low to a high value. Likewise, the value of hyst is subtracted from
the in high and in low values in order to specify the points at which the slope of the
hysteresis function would normally change abruptly as the input transitions from
a high to a low value. In fact, the slope of the hysteresis function is never allowed
to change abruptly but is smoothly varied whenever the input domain smoothing
parameter is set greater than zero.

Example SPICE Usage:
all 1 2 schmittl

.model schmittl hyst(in_low=0.7 in_high=2.4 hyst=0.5
+ out_lower_1limit=0.5 out_upper_1limit=3.0
+ input_domain=0.01 fraction=TRUE)

12.2.15 Differentiator

NAME_TABLE:

C_Function_Name: cm_d_dt

Spice_Model Name: d_dt

Description: "time-derivative block"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -

Null Allowed: no no

PARAMETER_TABLE:

200CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

gain
llgainll
real
1.0

no

yes

out_lower_limit
"output lower limit"
real

no

yes

out_offset
"output offset"
real

0.0

no

yes

out_upper_limit
"output upper limit"
real

no

yes

PARAMETER_TABLE:

Parameter Name: limit_range

Description: "upper & lower limit smoothing range"
Data_Type: real

Default_Value: 1.0e-6

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

Description: The Differentiator block is a simple derivative stage that approximates

the time derivative of an input signal by calculating the incremental slope of that
signal since the previous time point. The block also includes gain and output offset
parameters to allow for tailoring of the required signal, and output upper and lower
limits to prevent convergence errors resulting from excessively large output values.
The incremental value of output below the output upper limit and above the output
lower limit at which smoothing begins is specified via the limit range parameter.
In AC analysis, the value returned is equal to the radian frequency of analysis
multiplied by the gain.
Note that since truncation error checking is not included in the d_ dt block, it is not
recommended that the model be used to provide an integration function through
the use of a feedback loop. Such an arrangement could produce erroneous results.
Instead, you should make use of the "integrate" model, which does include truncation
error checking for enhanced accuracy.

Example SPICE Usage:
al2 7 12 slope_gen

.model slope_gen d_dt(out_offset=0.0 gain=1.0
+ out_lower_limit=le-12 out_upper_limit=1lel2
+ limit_range=1e-9)

12.2. ANALOG MODELS

12.2.16 Integrator

NAME_TABLE:
C_Function_Name:
Spice_Model Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

cm_int
int

"time-integration block"

in

"input"

in

v
[v,vd,i,id]

no

no

in_offset
"input offset"
real

0.0

no

yes

out lower limit
"output lower limit"
real

no

yes

limit_range

out
"output"

out

\%
[v,vd,i,id]

no

no

gain
llgainll
real
1.0

no

yes

out_upper_limit
"output upper limit"
real

no

yes

"upper & lower limit smoothing range"

real
1.0e-6

no

yes

out_ic

"output initial condition"

real
0.0

no

201

202CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null Allowed: yes

Description: The Integrator block is a simple integration stage that approximates the

integral with respect to time of an input signal. The block also includes gain and
input offset parameters to allow for tailoring of the required signal, and output
upper and lower limits to prevent convergence errors resulting from excessively
large output values. Note that these limits specify integrator behavior similar to
that found in an operational amplifier-based integration stage, in that once a limit
is reached, additional storage does not occur. Thus, the input of a negative value to
an integrator that is currently driving at the out upper limit level will immediately
cause a drop in the output, regardless of how long the integrator was previously
summing positive inputs. The incremental value of output below the output upper
limit and above the output lower limit at which smoothing begins is specified via
the limit range parameter. In AC analysis, the value returned is equal to the gain
divided by the radian frequency of analysis.
Note that truncation error checking is included in the int block. This should provide
for a more accurate simulation of the time integration function, since the model will
inherently request smaller time increments between simulation points if truncation
errors would otherwise be excessive.

Example SPICE Usage:
al3 7 12 time count

.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1el2 out_upper_limit=1lel2
+ limit_range=1e-9 out_ic=0.0)

12.2.17 S-Domain Transfer Function

NAME_TABLE:

C_Function_Name: cm_s_xfer

Spice_Model Name: s_xfer

Description: "s-domain transfer function"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_ Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real

12.2. ANALOG MODELS 203

Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: num_coeff

Description: "numerator polynomial coefficients"
Data_Type: real

Default Value: -

Limits: -

Vector: yes

Vector_ Bounds: (1 -]

Null Allowed: no

PARAMETER_TABLE:

Parameter Name: den_coeff

Description: "denominator polynomial coefficients"
Data_Type: real

Default Value: -

Limits: -

Vector: yes

Vector_Bounds: [1 -]

Null Allowed: no

PARAMETER_TABLE:

Parameter_ Name: int_ic

Description: "integrator stage initial conditions"
Data_Type: real

Default_Value: 0.0

Limits: -

Vector: yes

Vector_Bounds: den_coeff

Null Allowed: yes

PARAMETER_TABLE:

Parameter_ Name: denormalized_freq
Description: "denorm. corner freq.(radians) for 1 rad/s coeffs"
Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

Description: The s-domain transfer function is a single input, single output transfer
function in the Laplace transform variable ‘s’ that allows for flexible modulation of
the frequency domain characteristics of a signal. Ac and transient simulations are
supported. The code model may be configured to produce an arbitrary s-domain
transfer function with the following restrictions:

1. The degree of the numerator polynomial cannot exceed that

204CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

of the denominator polynomial in the variable "s".

2. The coefficients for a polynomial must be stated
explicitly. That is, if a coefficient is zero, it must be
included as an input to the num coeff or den coeff vector.

The order of the coefficient parameters is from that associated with the highest-powered
term decreasing to that of the lowest. Thus, for the coefficient parameters specified below,
the equation in ‘s’ is shown:

.model filter s_xfer(gain=0.139713

+ num_coeff=[1.0 0.0 0.7464102]

+ den_coeff=[1.0 0.998942 0.001170077]
+ int_ic=[0 0])

It specifies a transfer function of the form

N(s) =0.139713 - 524-0.7464102

5240.9989425+0.00117077

The s-domain transfer function includes gain and in__offset (input offset) parameters to
allow for tailoring of the required signal. There are no limits on the internal signal values
or on the output value of the s-domain transfer function, so you are cautioned to specify
gain and coefficient values that will not cause the model to produce excessively large
values. In AC analysis, the value returned is equal to the real and imaginary components
of the total s-domain transfer function at each frequency of interest.

The denormalized_ freq term allows you to specify coefficients for a normalized filter
(i.e. one in which the frequency of interest is 1 rad/s). Once these coefficients are included,
specifying the denormalized frequency value ‘shifts’ the corner frequency to the actual one
of interest. As an example, the following transfer function describes a Chebyshev low-pass
filter with a corner (pass-band) frequency of 1 rad/s:

1.0
N(s) =0.139713 - 1097357110251

In order to define an s_ xfer model for the above, but with the corner frequency equal to
1500 rad/s (9425 Hz), the following instance and model lines would be needed:

al2 nodel node2 chebyl
.model chebyl s_xfer(num_coeff=[1] den_coeff=[1 1.09773 1.10251]
+ int_ic=[0 0] denormalized_freq=1500)

In the above, you add the normalized coefficients and scale the filter through the use of
the denormalized freq parameter. Similar results could have been achieved by performing
the denormalization prior to specification of the coefficients, and setting denormalized
freq to the value 1.0 (or not specifying the frequency, as the default is 1.0 rad/s) Note in
the above that frequencies are always specified as radians/second.

Truncation error checking is included in the s-domain transfer block. This should pro-
vide for more accurate simulations, since the model will inherently request smaller time
increments between simulation points if truncation errors would otherwise be excessive.

The int__ic parameter is an array that must be of size one less as the array of values
specified for the den__coeff parameter. Even if a 0 start value is required, you have to
add the specific int__ic vector to the set of coefficients (see the examples above and below).

12.2. ANALOG MODELS

Example SPICE Usage:

al4 9 22 cheby LP_3kHz

.model cheby_ LP_3kHz s_xfer(in offset=0.0 gain=1.0 int_ic=[0 0]

+
+

NAME_TABLE:
C_Function_Name:

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

num_coeff=[1.0]
den_coeff=[1.0 1.42562 1.51620])

12.2.18 Slew Rate Block

cm_slew
slew
"A simple slew rate follower block"

in out

"input" "output"
in out

\% v
[v,vd,i,id] [v,vd,i,id]
no no

no no

rise_slope

"maximum rising slope value"
real

1.0e9

no

yes

fall_slope

"maximum falling slope value"
real

1.0e9

no

yes

range

"smoothing range"
real

0.1

no

205

206CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null Allowed: yes

Description: This function is a simple slew rate block that limits the absolute slope

of the output with respect to time to some maximum or value. The actual slew
rate effects of over-driving an amplifier circuit can thus be accurately modeled by
cascading the amplifier with this model. The units used to describe the maximum
rising and falling slope values are expressed in volts or amperes per second. Thus a
desired slew rate of 0.5 V/us will be expressed as 0.5e+6, etc.
The slew rate block will continue to raise or lower its output until the difference
between the input and the output values is zero. Thereafter, it will resume following
the input signal, unless the slope again exceeds its rise or fall slope limits. The range
input specifies a smoothing region above or below the input value. Whenever the
model is slewing and the output comes to within the input + or - the range value
the partial derivative of the output with respect to the input will begin to smoothly
transition from 0.0 to 1.0. When the model is no longer slewing (output = input),
dout/din will equal 1.0.

Example SPICE Usage:
al5 1 2 slewl
.model slewl slew(rise_slope=0.5e6 fall slope=0.5e6)

12.2.19 Inductive Coupling

NAME_TABLE:

C_Function Name: cm_lcouple

Spice_Model Name: lcouple

Description: "inductive coupling (for use with ’core’ model)"
PORT_TABLE:

Port Name: 1 mmf out
Description: "inductor" "mmf output (in ampere-turns)"
Direction: inout inout
Default_Type: hd hd
Allowed_Types: [h,hd] [hd]
Vector: no no
Vector Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter Name: num_turns

Description: "number of inductor turns"
Data_Type: real

Default Value: 1.0

Limits: -

Vector: no

Vector Bounds: -

Null Allowed: yes

Description: This function is a conceptual model that is used as a building block to
create a wide variety of inductive and magnetic circuit models. This function is

12.2. ANALOG MODELS 207

normally used in conjunction with the core model, but can also be used with
resistors, hysteresis blocks, etc. to build up systems that mock the behavior of
linear and nonlinear components.

The lcouple takes as an input (on the ‘1’ port), a current. This current value is
multiplied by the num_turns value, N, to produce an output value (a voltage value
that appears on the mmf _out port). The mmf out acts similar to a magnetomotive
force in a magnetic circuit; when the lcouple is connected to the core model, or
to some other resistive device, a current will flow. This current value (which is
modulated by whatever the lcouple is connected to) is then used by the lcouple to
calculate a voltage ‘seen’ at the 1 port. The voltage is a function of the derivative
with respect to time of the current value seen at mmf out.

The most common use for 1couples will be as a building block in the construction
of transformer models. To create a transformer with a single input and a single
output, you would require two 1couple models plus one core model. The process
of building up such a transformer is described under the description of the core
model, below.

Example SPICE Usage:
al50 (7 0) (9 10) 1lcouplel
.model lcouplel lcouple(num_turns=10.0)

12.2.20 Magnetic Core

NAME_TABLE:
C_Function_Name:
Spice_Model Name:

cm_core
core

Description: "magnetic core"
PORT_TABLE:

Port_Name: mc

Description: "magnetic core"
Direction: inout
Default_Type: gd
Allowed_Types: [g,gd]

Vector: no

Vector_Bounds: -

Null Allowed: no
PARAMETER_TABLE:

Parameter_ Name: H_array B_array

Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:

"magnetic field array"
real

yes
(2 -]

no

area
"cross—-sectional area"

"flux density array"
real

yes
[2 -]

no

length
"core length"

208CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real real
Default Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: input_domain

Description: "input sm. domain"

Data_Type: real

Default_Value: 0.01

Limits: [1e-12 0.5]

Vector: no

Vector_Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter Name: fraction

Description: "smoothing fraction/abs switch"
Data_Type: boolean

Default_Value: TRUE

Limits: -

Vector: no

Vector Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter Name: mode

Description: "mode switch (1 = pwl, 2 = hyst)"
Data_Type: int

Default Value: 1

Limits: [1 2]

Vector: no

Vector Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter_ Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"
Data_Type: real real
Default Value: 0.1 0.0

Limits: [0 -] -

12.2. ANALOG MODELS

209

Vector: no no
Vector Bounds: - -
Null_Allowed: yes yes

PARAMETER_TABLE:
Parameter Name:

out_upper_limit

Description: "output upper limit"
Data_Type: real

Default Value: 1.0

Limits: -

Vector: no

Vector Bounds: -

Null Allowed: yes

Description: This function is a conceptual model that is used as a building block to
create a wide variety of inductive and magnetic circuit models. This function is
almost always expected to be used in conjunction with the 1couple model to build
up systems that mock the behavior of linear and nonlinear magnetic components.
There are two fundamental modes of operation for the core model. These are the
pwl mode (which is the default, and which is the most likely to be of use to you)
and the hysteresis mode. These are detailed below.

PWL Mode (mode = 1)

The core model in PWL mode takes as input a voltage that it treats as a magnetomotive
force (mmf) value. This value is divided by the total effective length of the core to
produce a value for the Magnetic Field Intensity, H. This value of H is then used to find
the corresponding Flux Density, B, using the piecewise linear relationship described by
you in the H array / B array coordinate pairs. B is then multiplied by the cross-sectional
area of the core to find the Flux value, which is output as a current. The pertinent
mathematical equations are listed below:

H = mef, where L = Length

Here H, the Magnetic Field Intensity, is expressed in ampere-turns/meter.

B = f(H)

The B value is derived from a piecewise linear transfer function described to the model
via the (H array[|,B array[]) parameter coordinate pairs. This transfer function does
not include hysteretic effects; for that, you would need to substitute a HYST model for
the core.

210CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

¢ = BA, where A = Area

The final current allowed to flow through the core is equal to ¢. This value in turn is
used by the "lcouple" code model to obtain a value for the voltage reflected back across
its terminals to the driving electrical circuit.

The following example code shows the use of two 1couple models and one core model to
produce a simple primary/secondary transformer.

Example SPICE Usage:
al (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core

.model iron_core core (H_array

[-1000 -500 -375 -250 -188 -125 -63 0
63 125 188 250 375 500 1000]
[-3.13e-3 -2.63e-3 -2.33e-3 -1.93e-3
-1.5e-3 -6.25e-4 -2.5e-4 0 2.5e-4
6.25e-4 1.5e-3 1.93e-3 2.33e-3
2.63e-3 3.13e-3]

area = 0.01 length = 0.01)

a3 (6 0) (4 0) secondary

.model secondary lcouple (num_turns = 310)

B_array

+ + + + + +

HYSTERESIS Mode (mode = 2)

The core model in HYSTERESIS mode takes as input a voltage that it treats as a magne-
tomotive force (mmf) value. This value is used as input to the equivalent of a hysteresis
code model block. The parameters defining the input low and high values, the output low
and high values, and the amount of hysteresis are as in that model. The output from this
mode, as in PWL mode, is a current value that is seen across the mc port. An example
of the core model used in this fashion is shown below:

Example SPICE Usage:

al (2 0) (3 0) primary

.model primary lcouple (num_turns = 155)

a2 (3 4) iron_core

.model iron_core core (mode = 2 in_low=-7.0 in_high=7.0

+ out_lower_limit=-2.5e-4 out_upper_limit=2.5e-4
+ hyst = 2.3)

a3 (6 0) (4 0) secondary

.model secondary lcouple (num_turns = 310)

One final note to be made about the two core model nodes is that certain parameters
are available in one mode, but not in the other. In particular, the in_low, in_high,
out_ lower_ limit, out_ upper_limit, and hysteresis parameters are not available in PWL
mode. Likewise, the H array, B_array, area, and length values are unavailable in HY'S-
TERESIS mode. The input domain and fraction parameters are common to both modes
(though their behavior is somewhat different; for explanation of the input domain and
fraction values for the HYSTERESIS mode, you should refer to the hysteresis code model
discussion).

12.2. ANALOG MODELS 211
12.2.21 Controlled Sine Wave Oscillator
NAME_TABLE:
C_Function_Name: cm_sine
Spice_Model Name: sine
Description: "controlled sine wave oscillator"
PORT_TABLE:
Port Name: cntl in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed _Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null Allowed: no no
PARAMETER_TABLE:
Parameter_ Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3
Limits: - [0 -]
Vector: yes yes
Vector_ Bounds: [2 -] cntl_array
Null Allowed: no no
PARAMETER_TABLE:
Parameter Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default Value: -1.0 1.0
Limits: - -
Vector: no no
Vector Bounds: - -
Null Allowed: yes yes

Description: This function is a controlled sine wave oscillator with parametrizable values
of low and high peak output. It takes an input voltage or current value. This value
is used as the independent variable in the piecewise linear curve described by the
coordinate points of the cntl array and freq array pairs. From the curve, a frequency
value is determined, and the oscillator will output a sine wave at that frequency.
From the above, it is easy to see that array sizes of 2 for both the cntl array and the
freq array will yield a linear variation of the frequency with respect to the control
input. Any sizes greater than 2 will yield a piecewise linear transfer characteristic.
For more detail, refer to the description of the piecewise linear controlled source,
which uses a similar method to derive an output value given a control input.

Example SPICE Usage:

asine 1 2 in_sine

.model in_sine sine(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = -5.0

NAME_TABLE:
C_Function_Name:

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

out_high = 5.0)

cm_triangle
triangle

212CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

12.2.22 Controlled Triangle Wave Oscillator

"controlled triangle wave oscillator"

cntl_in
"control input"
in

\

[v,vd,i,id]

no

no

cntl_array
"control array
real

0.0

yes
[2 -]

no

out_low

"output peak low value"
real

-1.0

no

yes

duty_cycle

"rise time duty cycle"
real

0.5

[1e-10 0.999999999]

no

yes

out
"output"
out

\'%
[v,vd,i,id]

no

no

freq_array
"frequency array"
real

1.0e3

[0 -]

yes

cntl_array

no

out_high

"output peak high value"
real

1.0

no

yes

Description: This function is a controlled triangle /ramp wave oscillator with parametriz-

able values of low and high peak output and rise time duty cycle. It takes an input

voltage or current value.

This value is used as the independent variable in the

12.2. ANALOG MODELS 213

piecewise linear curve described by the coordinate points of the cntl array and
freq_array pairs.

From the curve, a frequency value is determined, and the oscillator will output a
triangle wave at that frequency. From the above, it is easy to see that array sizes
of 2 for both the cntl array and the freq array will yield a linear variation of the
frequency with respect to the control input. Any sizes greater than 2 will yield
a piecewise linear transfer characteristic. For more detail, refer to the description
of the piecewise linear controlled source, which uses a similar method to derive an
output value given a control input.

Example SPICE Usage:

ain 1 2 rampl

.model rampl triangle(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0 duty_cycle = 0.9)

12.2.23 Controlled Square Wave Oscillator

NAME_TABLE:

C_Function_Name: cm_square

Spice_Model_Name: square

Description: "controlled square wave oscillator"
PORT_TABLE:

Port Name: cntl in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -

Null Allowed: no no

PARAMETER_TABLE:
Parameter_ Name:

cntl_array

freq_array

Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3

Limits: - [0 -]

Vector: yes yes

Vector Bounds: [2 -] cntl_array

Null Allowed: no no
PARAMETER_TABLE:

Parameter Name: out low out_high

Description: "output peak low value" "output peak high value"
Data_Type: real real

Default_Value: -1.0 1.0

Limits: - -

Vector: no no

Vector_Bounds:

214CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null Allowed: yes yes
PARAMETER.TABLE:

Parameter_Name: duty_cycle rise_time
Description: "duty cycle" "output rise time"
Data_Type: real real
Default_Value: 0.5 1.0e-9
Limits: [1e-6 0.999999] -

Vector: no

Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: fall time

Description: "output fall time"
Data_Type: real
Default_Value: 1.0e-9

Limits: -

Vector: no

Vector Bounds: -

Null_Allowed: yes

Description: This function is a controlled square wave oscillator with parametrizable

values of low and high peak output, duty cycle, rise time, and fall time. It takes
an input voltage or current value. This value is used as the independent variable
in the piecewise linear curve described by the coordinate points of the cntl array
and freq array pairs. From the curve, a frequency value is determined, and the
oscillator will output a square wave at that frequency.
From the above, it is easy to see that array sizes of 2 for both the cntl array and the
freq_array will yield a linear variation of the frequency with respect to the control
input. Any sizes greater than 2 will yield a piecewise linear transfer characteristic.
For more detail, refer to the description of the piecewise linear controlled source,
which uses a similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 pulsel
.model pulsel square(cntl_array = [-1 0 5 6]

+ freq_array=[10 10 1000 1000] out_low = 0.0
+ out_high = 4.5 duty_cycle = 0.2
+ rise_time = le-6 fall time = 2e-6)

12.2.24 Controlled One-Shot

NAME TABLE:
C_Function_Name:
Spice_Model Name:

cm_oneshot
oneshot

Description: "controlled one-shot"
PORT_TABLE:
Port Name: clk cntl_in

Description: "clock input" "control input"

12.2. ANALOG MODELS

Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

in

v
[v,vd,i,id]

no

no

clear

"clear signal"
in

\

[v,vd,i,id]

no

yes

clk_trig

"clock trigger value"
real

0.5

no

no

pos_edge_trig

"positive/negative edge

boolean
TRUE

no

no

cntl_array
"control array"
real

0.0

yes

yes

out low

"output low value"
real

0.0

in

v
[v,vd,i,id]

no

yes

out
"output"
out

\'%
[v,vd,i,id]

no

no

retrig

"retrigger switch"
boolean

FALSE

no

yes

trigger switch"

pw_array

"pulse width array"

real
1.0e-6
[0.00 -]
yes
cntl_array
yes

out_high

"output high value"

real
1.0

215

216CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: no no

Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: fall time rise_time
Description: "output fall time" "output rise time"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: - -

Vector: no no

Vector Bounds: - -

Null Allowed: yes yes

PARAMETER_TABLE:

Parameter_ Name:

rise_delay

Description: "output delay from trigger"
Data_Type: real

Default_Value: 1.0e-9

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter Name: fall delay
Description: "output delay from pw"
Data_Type: real

Default Value: 1.0e-9

Limits: -

Vector: no

Vector Bounds: -

Null_Allowed: yes

Description: This function is a controlled oneshot with parametrizable values of low and

high peak output, input trigger value level, delay, and output rise and fall times.
It takes an input voltage or current value. This value is used as the independent
variable in the piecewise linear curve described by the coordinate points of the
cntl _array and pw_ array pairs. From the curve, a pulse width value is determined.
The one-shot will output a pulse of that width, triggered by the clock signal (rising
or falling edge), delayed by the delay value, and with specified rise and fall times. A
positive slope on the clear input will immediately terminate the pulse, which resets
with its fall time.

From the above, it is easy to see that array sizes of 2 for both the cntl array and the
pw__array will yield a linear variation of the pulse width with respect to the control
input. Any sizes greater than 2 will yield a piecewise linear transfer characteristic.
For more detail, refer to the description of the piecewise linear controlled source,
which uses a similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 3 4 pulse2

12.2. ANALOG MODELS 217

.model pulse2 oneshot(cntl_array = [-1 0 10 11]

pw_array=[le-6 le-6 le-4 le-4]

clk_trig = 0.9 pos_edge_trig = FALSE
out_low = 0.0 out_high = 4.5

rise_delay = 20.0e-9 fall delay = 35.0e-9)

+ + + +

12.2.25 Capacitance Meter

NAME _TABLE:

C_Function_Name: cm_cmeter

Spice_Model Name: cmeter

Description: "capacitance meter"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: gain

Description: "gain"

Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector Bounds: -

Null_ Allowed: yes

Description: The capacitance meter is a sensing device that is attached to a circuit
node and produces as an output a scaled value equal to the total capacitance seen
on its input multiplied by the gain parameter. This model is primarily intended
as a building block for other models that must sense a capacitance value and alter
their behavior based upon it.

Example SPICE Usage:
atestl 1 2 ctest
.model ctest cmeter(gain=1.0e12)

12.2.26 Inductance Meter

NAME_TABLE:
C_Function_Name: cm_lmeter
Spice_Model Name: lmeter

Description: "inductance meter"

218CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: gain

Description: "gain"

Data_Type: real

Default_Value: 1.0

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

Description: The inductance meter is a sensing device that is attached to a circuit node
and produces as an output a scaled value equal to the total inductance seen on
its input multiplied by the gain parameter. This model is primarily intended as a
building block for other models that must sense an inductance value and alter their
behavior based upon it.

Example SPICE Usage:
atest2 1 2 ltest
.model ltest lmeter(gain=1.0e6)

12.2.27 Memristor

NAME_TABLE:

C_Function_Name: cm_memristor

Spice_Model Name: memristor

Description: "Memristor Interface"
PORT_TABLE:

Port Name: memris

Description: "memristor terminals"
Direction: inout

Default_Type: gd

Allowed_Types: [gd]

Vector: no

Vector_Bounds: -

Null Allowed: no

PARAMETER_TABLE:

Parameter Name: rmin rmax
Description: "minimum resistance" "maximum resistance"

Data_Type: real real

12.2. ANALOG MODELS

Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

10.0

no

no

rinit

"initial resistance"

real
7000.0

no

no

alpha

"model parameter 1"

real
0.0

no

no

219

10000.0

no

no

vt
"threshold"
real

0.0

no

no

beta
"model parameter 2"
real
1.0

no

no

Description: The memristor is a two-terminal resistor with memory, whose resistance

depends on the time integral of the voltage across its terminals. rmin and rmax
provide the lower and upper limits of the resistance, rinit is its starting value (no
voltage applied so far). The voltage has to be above a threshold vt to become
effective in changing the resistance. alpha and beta are two model parameters. The
memristor code model is derived from a SPICE subcircuit published in [23].

Example SPICE Usage:

amen 1 2 memr

.model memr memristor (rmin=1k rmax=10k rinit=7k

+ alpha=0 beta=2el3 vt=1.6)

NAME_TABLE:
C_Function_Name:
Spice_Model Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:

12.2.28 2D table model

cm_table2D
table2D
"2D table model"

inx

"inputx"

in

\
[v,vd,i,id,vnam]

out
"output"
out

i

[v,vd,i,id,vnam] [v,vd,i,id]

220CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector:
Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

no

no

order
"order"
int

3

no

yes

offset
"offset"
real
0.0

no

yes

file

"file name"

string

no no

no no

verbose
"verbose"
int

0

no

yes
gain
llgainll
real
1.0

no

yes

"2D-table-model.txt"

no

yes

Description: The 2D table model reads a matrix from file "file name' (default 2D-
table-model.txt) which has x columns and y rows. Each x,y pair, addressed by
inx and iny, yields an output value out. Linear interpolation is used for out, eno
(essentially non oscillating) interpolation for its derivatives. Parameters offset (de-
fault 0) and gain (default 1) modify the output table values according to of fset +
gain out. Parameter order (default 3) influences the calculation of the derivatives.
Parameter verbose (default 0) yields test outputs, if set to 1 or 2. The table format
is shown below. Be careful to include the data point inx = 0, iny = 0 into your
table, because ngspice uses these during .0P computations. The x horizontal and y
vertical address values have to increase monotonically.

Table Example:
* table source

number of columns (x)

*
8
* number of rows (y)
9

12.2. ANALOG MODELS 221

* x horizontal (column) address values (real numbers)
-10123456

* y vertical (row) address values (real numbers)

-0.6 0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

* table with output data (horizontally addressed by x, vertically by y)
10.90.80.70.60.50.40.3

11111111

11.21.41.61.822.22.4

11.522533.544.5

12345678

1254557 8.510 11.5

135791113 15

13.56 8.5 11 13.5 16 18.5

147 10 13 16 19 22

Description: The usage example consists of two input voltages referenced to ground and
a current source output with two floating nodes.

Example SPICE Usage:
atab inx iny %id(outl out2) tabmod
.model tabmod table2d (offset=0.0 gain=1 order=3 file="table-simple.txt")

12.2.29 3D table model

NAME_TABLE:
C_Function_Name:

Spice_Model Name:

Description: "3D table model"

PORT_TABLE:

Port_Name: inx iny inz
Description: "inputx" "inputy" "inputz"
Direction: in in in
Default_Type: v v v

Allowed_Types:

cm_table3D
table3D

[v,vd,i,id,vnam]

[v,vd,i,id, vnam]

[v,vd,i,id,vnam]

Vector: no no no
Vector Bounds: - - -
Null Allowed: no no no
PORT_TABLE:

Port_Name: out

Description: "output"

Direction: out

Default_Type: i

Allowed_Types: [v,vd,i,id]

Vector: no

Vector Bounds: -

Null Allowed: no

PARAMETER_TABLE:

Parameter_ Name: order verbose

222CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "order" "verbose"
Data_Type: int int
Default Value: 3 0
Limits: - -
Vector: no no
Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: offset gain
Description: "offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: file

Description: "file name"
Data_Type: string

Default Value: "3D-table-model.txt"
Limits: -

Vector: no

Vector Bounds: -

Null_Allowed: yes

Description: The 3D table model reads a matrix from file "file name" (default 3D-
table-model.txt) which has x columns, y rows per table and z tables. Each x,y,z
triple, addressed by inx, iny, and inz, yields an output value out. Linear interpola-
tion is used for out, eno (essentially non oscillating) interpolation for its derivatives.
Parameters offset (default 0) and gain (default 1) modify the output table values
according to of fset + gain out. Parameter order (default 3) influences the calcu-
lation of the derivatives. Parameter verbose (default 0) yields test outputs, if set
to 1 or 2. The table format is shown below. Be careful to include the data point
inx = 0, iny = 0, inz = 0 into your table, because ngspice needs these to for the .0P
calculation. The x horizontal, y vertical, and z table address values have to increase
monotonically.

Table Example:

* 3D table for nmos bsim 4, W=10um, L=0.13um
*X

39

xy

39

*Z

11

*x (drain voltage)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 ...

12.2. ANALOG MODELS 223

xy (gate voltage)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 ...

*xz (substrate voltage)

-1.8-1.6 -1.4-1.2-1-0.8-0.6 -0.4-0.200.2
*table -1.8

-4.50688E-10 -4.50613E-10 -4.50601E-10 -4.50599E-10 ...
-4.49622E-10 -4.49267E-10 -4.4921E-10 -4.49202E-10 ...
-4.50672E-10 -4.49099E-10 -4.48838E-10 -4.48795E-10 ...
-4 .55575E-10 -4.4953E-10 -4.48435E-10 -4.48217E-10 ...

*table -1.6
-3.10015E-10 -3.09767E-10 -3.0973E-10 -3.09724E-10 ...
-3.09748E-10 -3.08524E-10 -3.08339E-10 -3.08312E-10 ...

*table -1.4
-2.04848E-10 -2.04008E-10 -2.03882E-10 ...
-2.07275E-10 -2.03117E-10 -2.02491E-10 ...

Description: The usage example simulates a NMOS transistor with independent drain,
gate and bulk nodes, referenced to source. Parameter gain may be used to emulate
transistor width, with respect to the table transistor.

Example SPICE Usage:

amosl %vd(d s) %vd(g s) %vd(b s) %id(d s) mostablel
.model mostablel table3d (offset=0.0 gain=0.5 order=3
+ verbose=1 file="table-3D-bsim4n.txt")

12.2.30 Simple Diode Model

NAME_TABLE:

C_Function_Name: cm_sidiode

Spice_Model Name: sidiode

Description: "simple diode"

PORT_TABLE:

Port Name: ds

Description: "diode port"

Direction: inout

Default_Type: gd

Allowed_Types: [gd]

Vector: no

Vector_Bounds: -

Null Allowed: no

PARAMETER_TABLE:

Parameter Name: ron roff
Description: "resistance on-state" "resistance off-state"

Data_Type: real real

224CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Default_Value: 1 1!
Limits: [le-6 -] [1e-12 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_ Name: viwd vrev
Description: "forward voltage" "reverse breakdown voltage"
Data_Type: real real
Default Value: 0. 1e30
Limits: 0. -] 0. -]
Vector: no no

Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: ilimit revilimit
Description: "limit of on-current" "limit of breakdown current"
Data_Type: real real
Default Value: 1e30 1e30
Limits: [le-15 -] [le-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: epsilon revepsilon
Description: "width quadrat. reg. 1" '"width quadratic region 2"
Data_Type: real real
Default Value: 0. 0.
Limits: [0. -] [0. -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: rrev

Description: "resistance in breakdown"
Data_Type: real

Default_Value: 0.

Limits: -

Vector: no

Vector_Bounds: -

Null_Allowed: yes

This is a model for a simple diode. Three regions are modelled as linear I(V) curves:
Reverse (breakdown) current with Rrev starting at Vrev into the negative direction, Off
current with Roff between Vrev and Vfwd and an On region with Ron, staring at Vfwd.
The interface between the regions is described by a quadratic function, the width of the
interface region is determined by Revepsilon and Epsilon. Current limits in the reverse

LIf roff is not given, ron is the default

12.2. ANALOG MODELS 225

breakdown (Revilimit) and in the forward (on) state (llimit) may be set. The interface is
a tanh function. Thus the first derivative of the I(V) curve is continuous. All parameter
values are entered as positive numbers. A diode capacitance is not modelled.

Example SPICE Usage:

al a k dsi

.model dsl sidiode(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=7)

12.2.31 Analog delay

PORT_TABLE:

Port Name: in out cntrl
Description: "input" "output" "control"
Direction: in out in
Default_Type: v v v
Allowed_Types: [v,vd,vnam] [v,vd] [v,vd,i,id]
Vector: no no no

Vector Bounds: - - -

Null Allowed: no no yes
PARAMETER_TABLE:

Parameter Name: delay buffer_size
Description: "time delay" "size of delay buffer"
Data_Type: real int

Default Value: 0.0 1024

Limits: - [1 -]

Vector: no no

Vector Bounds: - -

Null Allowed: yes yes

PARAMETER_TABLE:

Parameter_ Name:

Description: "controlled delay"
Data_Type: boolean

Default_Value: FALSE

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter Name: delmin delmax
Description: "min delay" "max delay"
Data_Type: real real
Default Value: 0 0
Limits: [0 -1 (o -]
Vector: no no
Vector Bounds: - -
Null_Allowed: yes yes

has_delay_cnt

226CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: During a transient simulation the input voltage at node in and its
associated time value are stored in a ring buffer. buffer_size allows to set the
size of the buffer, the default is 1024 time steps. There are two modes to read out
the buffer contents with a delay and obtain the delayed values at port out,
determined by has_delay_cnt. If has_delay_cnt is TRUE, then you may vary the
delay time between delmin and delmax by a control voltage between 0 and 1 at
the input terminal cntrl. Parameter delay is ignored. If has_delay_cnt has
been set to FALSE, then the signal is delayed by the time value given by delay .

Example SPICE Usage:

adelayl in out cntrl mydell

.model mydell delay(delay=2m buffer_size=2048)

adelay2 in out cntrl mydel2

.model mydel2 delay(has_delay_cnt=TRUE delmin=5u delmax=8u)

Due to the fact that time steps are not constant during a transient simulation, but op-
timized by the simulator, the delayed values are sometimes slightly deviating from the
original, depending on the number of steps. So in a sinusoidal wave we will see a distortion
< 0.3% for 1000 steps per sin cycle.

12.3 Hybrid Models

The following hybrid models are supplied with XSPICE. The descriptions included below
consist of the model Interface Specification File and a description of the model’s operation.
This is followed by an example of a simulator-deck placement of the model, including the
.MODEL card and the specification of all available parameters.

A note should be made with respect to the use of hybrid models for other than simple
digital-to-analog and analog-to-digital translations. The hybrid models represented in
this section address that specific need, but in the development of user-defined nodes you
may find a need to translate not only between digital and analog nodes, but also between
real and digital, real and int, etc. In most cases such translations will not need to be as
involved or as detailed as shown in the following.

12.3.1 Digital-to-Analog Node Bridge

NAME_TABLE:

C_Function_Name: cm_dac_bridge

Spice_Model Name: dac_bridge

Description: "digital-to—-analog node bridge"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out

Default_Type: d v

12.3. HYBRID MODELS

Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

[d]

yes
no

out_low

"O-valued analog output"

real
0.0

no

yes

out_high

"l1-valued analog output"

real
1.0

no

yes

out undef

"U-valued analog output"

real
0.5

no

yes

t _rise

"rise time 0->1"
real

1.0e-9

no

yes

[v,vd,i,id,d]
yes

no

input_load
"input load (F)"
real

1.0e-12

no

yes

t fall

"fall time 1->0"
real

1.0e-9

no

yes

227

Description: The dac_bridge is the first of two node bridge devices designed to allow for

the ready transfer of digital information to analog values and back again. The second
device is the adc_bridge (which takes an analog value and maps it to a digital
one).The dac_bridge takes as input a digital value from a digital node. This value
by definition may take on only one of the values ‘0’, ‘1" or ‘U’. The dac_bridge then
outputs the value out_low, out_high or out_undef, or ramps linearly toward one
of these ‘final’ values from its current analog output level. The speed at which this

228CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

ramping occurs depends on the values of t_rise and t_fall. These parameters are
interpreted by the model such that the rise or fall slope generated is always constant.
Note that the dac_bridge includes test code in its cfunc.mod file for determining
the presence of the out_undef parameter. If this parameter is not specified by you,
and if out_high and out_low wvalues are specified, then out_undef is assigned the
value of the arithmetic mean of out_high and out_low. This simplifies coding of
output buffers, where typically a logic family will include an out_low and out_high
voltage, but not an out_undef value. This model also posts an input load value (in
farads) based on the parameter input load.

Example SPICE Usage:

abridgel [7] [2] dacl

.model dacl dac_bridge(out_low = 0.7 out_high = 3.5 out_undef = 2.2
+ input_load = 5.0e-12 t_rise = 50e-9

+ t_fall = 20e-9)

12.3.2 Analog-to-Digital Node Bridge

NAME_TABLE:
C_Function_Name:
Spice_Model Name:

cm_adc_bridge
adc_bridge

Description: "analog-to-digital node bridge"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id,d] [d]
Vector: yes yes
Vector_Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_ Name: in_low

Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:

"maximum O-valued analog input"
real
1.0

no

yes

in_high

"minimum 1-valued analog input"
real

2.0

no

12.3. HYBRID MODELS

Null Allowed:
PARAMETER_TABLE:

yes

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes

229

Description: The adc_bridge is one of two node bridge devices designed to allow for the

ready transfer of analog information to digital values and back again. The second
device is the dac_bridge (which takes a digital value and maps it to an analog one).
The adc_bridge takes as input an analog value from an analog node. This value
by definition may be in the form of a voltage, or a current. If the input value is
less than or equal to in_low, then a digital output value of ‘0’ is generated. If the
input is greater than or equal to in_high, a digital output value of ‘1’ is generated.
If neither of these is true, then a digital ‘UNKNOWN’ value is output. Note that

unlike the case of the dac_bridge, no ramping time or delay is associated with the
adc_bridge. Rather, the continuous ramping of the input value provides for any
associated delays in the digitized signal.

Example SPICE Usage:
abridge2 [1] [8] adc_buff
.model adc_buff adc_bridge(in_low = 0.3 in_high = 3.5)

12.3.3 Controlled Digital Oscillator

NAME_TABLE:
C_Function_Name: cm_d_osc
Spice_Model Name: d_osc

Description: "controlled digital oscillator"
PORT_TABLE:

Port Name: cntl in out
Description: "control input" "output"
Direction: in out
Default_Type: \ d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no
Vector Bounds: - -

Null Allowed: no no

PARAMETER_TABLE:
Parameter Name:

Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e6

Limits:

cntl_array

freq_array

[0 -]

230CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: yes yes

Vector_ Bounds: [2 -] cntl_array
Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: duty_cycle init_phase
Description: "duty cycle" "initial phase of output"
Data_Type: real real
Default_Value: 0.5 0

Limits: [1e-6 0.999999] [-180.0 +360.0]
Vector: no no

Vector Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: le-9 le-9

Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes

Description: The digital oscillator is a hybrid model that accepts as input a voltage or
current. This input is compared to the voltage-to-frequency transfer characteristic
specified by the cntl_array/freq_array coordinate pairs, and a frequency is ob-
tained that represents a linear interpolation or extrapolation based on those pairs.
A digital time-varying signal is then produced with this fundamental frequency.
The output waveform, which is the equivalent of a digital clock signal, has rise and
fall delays that can be specified independently. In addition, the duty cycle and the
phase of the waveform are also variable and can be set by you.

Example SPICE Usage:
ab 1 8 var_clock

.model var_clock d_osc(cntl_array = [-2 -1 1 2]
+ freq_array = [le3 1e3 10e3 10e3]
+ duty_cycle = 0.4 init_phase = 180.0

+ rise_delay = 10e-9 fall delay=8e-9)

12.3.4 Node bridge from digital to real with enable

NAME_TABLE:

Spice_Model Name: d_to_real

C_Function_Name: wucm_d_to_real

Description: "Node bridge from digital to real with enable"

PORT_TABLE:
Port_Name: in enable out
Description: "input" "enable" "output"

Direction: in in out

Default_Type:
Allowed_Types:
Vector:

Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

NAME_TABLE:

12.3. HYBRID MODELS

d d
[d] [d]
no no
no yes
Zero

"value for 0"
real

0.0

no

yes

Spice_Model Name: real_delay
C_Function_Name: ucm_real_delay
Description: "A Z ** -1 block working on real data"

PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

NAME_TABLE:

Spice_Model Name:
C_Function_Name:

Description:
PORT_TABLE:
Port_Name:

in
"input"
in
real
[reall
no

no

delay

cl
"c
in
d
[d
no

no

real
[reall
no

no

one
"value for 1"
real
1.0

no

yes

12.3.5 A Z**-1 block working on real data

k out
lock"
out
real

delay
"delay"
real
1le-9
[1e-15 -]
no

yes

"output"

] [reall

no

no

"delay from clk to out"

real
1le-9
[1e-15 -]
no

yes

real _gain

ucm_real_gain

"A gain block for event-driven real data"

in

out

12.3.6 A gain block for event-driven real data

231

232CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

"input"
in
real
[reall
no

no

in_offset
"input offset"
real

0.0

no

yes

delay
"delay"
real
1.0e-9

no

yes

"output"
out

real
[reall
no

no

gain out_offset
"gain" "output offset"
real real

1.0 0.0

no no

yes yes

ic

"initial condition"
real

0.0

no

yes

12.3.7 Node bridge from real to analog voltage

NAME_TABLE:
Spice_Model Name:
C_Function_Name:
Description:
PORT_TABLE:
Port_Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

real to v
ucm_real to v

"Node bridge from real to analog voltage"

in
"input"
in
real
[reall
no

no

gain
llgainll
real
1.0

no

out

"output"

out

v

[v, vd, i, id]
no

no

transition_time

"output transition time"
real

le-9

[le-15 -]

no

12.4. DIGITAL MODELS 233

Vector_Bounds: - -
Null Allowed: yes yes

12.4 Digital Models

The following digital models are supplied with XSPICE. The descriptions included below
consist of an example model Interface Specification File and a description of the model’s
operation. This is followed by an example of a simulator-deck placement of the model,
including the .MODEL card and the specification of all available parameters. Note that
these models have not been finalized at this time.

Some information common to all digital models and/or digital nodes is included here.
The following are general rules that should make working with digital nodes and models
more straightforward:

1. All digital nodes are initialized to ZERO at the start of a simulation (i.e., when
INIT=TRUE). This means that a model need not post an explicit value to an
output node upon initialization if its output would normally be a ZERO (although
posting such would certainly cause no harm).

2. Digital nodes may have one out of twelve possible node values. See 12.5.1 for details.

3. Digital models typically have defined their rise and fall delays for their output
signals. A capacitive input load value may be defined as well to determine a load-
dependent delay, but is currently not used in any code model (see 28.7.1.4).

4. Several commands are available for outputting data, e.g. eprint, edisplay, and
eprved. Digital inputs may be read from files. Please see Chapt. 12.5.4 for more
details.

5. Hybrid models (see Chapt. 12.3) provide an interface between the digital event
driven world and the analog world of ngspice to enable true mixed mode simulation.

12.4.1 Buffer

NAME_TABLE:

C_Function_Name: cm_d_buffer

Spice_Model Name: d_buffer

Description: "digital one-bit-wide buffer"
PORT_TABLE:

Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null Allowed: no no

PARAMETER_TABLE:

234CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

rise_delay fall_delay
"rise delay" "fall delay"
real real
1.0e-9 1.0e-9
[1.0e-12 -] [1.0e-12 -]
no no

yes yes
input_load

"input load value (F)"

real

1.0e-12

no

yes

Description: The buffer is a single-input, single-output digital buffer that produces as
output a time-delayed copy of its input. The delays associated with an output rise
and those associated with an output fall may be different. The model also posts an
input load value (in farads) based on the parameter input load. The output of this
model does not, however, respond to the total loading it sees on its output; it will

always drive the output

Example SPICE Usage:
a6 1 8 buffl

.model buffl d_buffer(rise_delay

+

12.4.2 Inverter

NAME_TABLE:
C_Function_ Name:
Spice_Model Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:

strongly with the specified delays.

0.5e-9 fall _delay = 0.3e-9
0.5e-12)

input_load

cm_d_inverter
d_inverter
"digital one-bit-wide inverter"

in out

"input" "output"

in out

d d

[d] [d]

no no

no no
rise_delay fall_delay
"rise delay" "fall delay"

12.4. DIGITAL MODELS

Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

real
1.0e-9
[1.0e-12 -]
no

yes

input_load

"input load value (F)"
real

1.0e-12

no

yes

235

real
1.0e-9
[1.0e-12 -]
no

yes

Description: The inverter is a single-input, single-output digital inverter that produces
as output an inverted, time-delayed copy of its input. The delays associated with an
output rise and those associated with an output fall may be specified independently.
The model also posts an input load value (in farads) based on the parameter input
load. The output of this model does not, however, respond to the total loading it
sees on its output; it will always drive the output strongly with the specified delays.

Example SPICE Usage:

a6 1 8 invl

.model invl d_inverter(rise_delay

+

12.4.3 And

NAME TABLE:
C_Function_Name:
Spice_Model Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:

input_load = 0.5e-12)
cm_d_and
d_and

"digital ‘and’ gate"

in
"input"
in

d

[d]

yes

(2 -]

no

rise_delay
"rise delay"
real

1.0e-9

0.5e-9 fall delay = 0.3e-9

out
"output"
out

[d]

no
no

fall_delay
"fall delay"
real

1.0e-9

Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

[1.0e-12 -]
no

yes

input_load

"input load value
real

1.0e-12

no

yes

236CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

[1.0e-12 -]
no

yes

(F) n

Description: The digital and gate is an n-input, single-output and gate that produces

an active ‘1’ value if, and only if, all of its inputs are also ‘1’ values. If ANY of
the inputs is a ‘0’, the output will also be a ‘0’; if neither of these conditions holds,
the output will be unknown. The delays associated with an output rise and those
associated with an output fall may be specified independently. The model also posts
an input load value (in farads) based on the parameter input load. The output of
this model does not, however, respond to the total loading it sees on its output; it
will always drive the output strongly with the specified delays.

Example SPICE Usage:

a6 [1 2] 8 andil

.model andl d_and(rise_delay
input_load

+
12.4.4 Nand
NAME TABLE:

C_Function_Name:

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:

cm_d_nand
d_nand

0.5e-9 fall delay = 0.3e-9
0.5e-12)

"digital ‘nand’ gate"

in
"input"
in

d

[d]

yes

(2 -]

no

rise_delay
"rise delay"
real

1.0e-9

out
"output"
out

[d]

no
no

fall_delay
"fall delay"
real

1.0e-9

12.4. DIGITAL MODELS

Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

[1.0e-12 -]
no

yes

input_load

"input load value (F)"
real

1.0e-12

no

yes

237

[1.0e-12 -]
no

yes

Description: The digital nand gate is an n-input, single-output nand gate that produces
an active ‘0’ value if and only if all of its inputs are ‘1’ values. If ANY of the inputs
is a ‘0’, the output will be a ‘1’; if neither of these conditions holds, the output will
be unknown. The delays associated with an output rise and those associated with
an output fall may be specified independently. The model also posts an input load
value (in farads) based on the parameter input load. The output of this model does
not, however, respond to the total loading it sees on its output; it will always drive
the output strongly with the specified delays.

Example SPICE Usage:
a6 [1 2 3] 8 nandl
.model nandl d_nand(rise_delay

+
12.4.5 Or
NAME_TABLE:

C_Function_Name:
Spice_Model Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:

input_load = 0.5e-12)
cm_d_or
d_or

"digital ‘or’ gate"

in
"input"
in

d

[d]

yes

(2 -]

no

rise_delay
"rise delay"
real

1.0e-9

0.5e-9 fall delay = 0.3e-9

out
"output"
out

[d]

no
no

fall_delay
"fall delay"
real

1.0e-9

238CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: input_load

Description: "input load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

Description: The digital or gate is an n-input, single-output or gate that produces an
active ‘1’ value if at least one of its inputs is a ‘1’ value. The gate produces a ‘0’
value if all inputs are ‘0’; if neither of these two conditions holds, the output is
unknown. The delays associated with an output rise and those associated with an
output fall may be specified independently. The model also posts an input load
value (in farads) based on the parameter input load. The output of this model does
not, however, respond to the total loading it sees on its output; it will always drive
the output strongly with the specified delays.

Example SPICE Usage:
a6 [1 2 3] 8 ort
.model orl d_or(rise_delay

0.5e-9 fall_delay = 0.3e-9

+ input_load = 0.5e-12)
12.4.6 Nor

NAME TABLE:

C_Function_Name: cm_d_nor

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:

d_nor

"digital ‘nor’ gate"

in
"input"
in

d

[d]

yes

(2 -]

no

rise_delay
"rise delay"
real

1.0e-9

out
"output"
out

[d]

no
no

fall_delay
"fall delay"
real

1.0e-9

12.4. DIGITAL MODELS

Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

[1.0e-12 -]
no

yes

input_load

"input load value (F)"
real

1.0e-12

no

yes

239

[1.0e-12 -]
no

yes

Description: The digital nor gate is an n-input, single-output nor gate that produces
an active ‘0’ value if at least one of its inputs is a ‘1’ value. The gate produces a
‘0’ value if all inputs are ‘0’; if neither of these two conditions holds, the output
is unknown. The delays associated with an output rise and those associated with
an output fall may be specified independently. The model also posts an input load
value (in farads) based on the parameter input load. The output of this model does
not, however, respond to the total loading it sees on its output; it will always drive
the output strongly with the specified delays.

Example SPICE Usage:

anorl2 [1 2 3 4] 8 nori2
.model norl2 d_nor(rise_delay = 0.5e-9 fall delay = 0.3e-9

+
12.4.7 Xor
NAME_TABLE:

C_Function_Name:
Spice_Model Name:
Description:
PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:

input_load = 0.5e-12)

cm_d_xor
d_xor

"digital exclusive-or gate"

in
"input"
in

d

[d]

yes

(2 -]

no

rise_delay
"rise delay"
real

1.0e-9

out
"output"
out
d

[d]
no

no

fall_delay
"fall delay"
real

1.0e-9

240CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: input_load

Description: "input load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: yes

Description: The digital xor gate is an n-input, single-output xor gate that produces

an active ‘1’ value if an odd number of its inputs are also ‘1’ values. The delays
associated with an output rise and those associated with an output fall may be
specified independently.

The model also posts an input load value (in farads) based on the parameter input
load. The output of this model does not, however, respond to the total loading
it sees on its output; it will always drive the output strongly with the specified
delays. Note also that to maintain the technology-independence of the model, any
UNKNOWN input, or any floating input causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xor3
.model xor3 d_xor(rise_delay

0.5e-9 fall delay = 0.3e-9

+ input_load = 0.5e-12)

12.4.8 Xnor
NAME_TABLE:
C_Function_Name: cm_d_xnor
Spice_Model Name: d_xnor
Description: "digital exclusive-nor gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null Allowed: no no
PARAMETER_TABLE:
Parameter_ Name: rise_delay fall delay
Description: "rise delay" "fall delay"

Data_Type: real real

12.4. DIGITAL MODELS

Default_Value:
Limits:
Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:
Parameter_ Name:

Description:
Data_Type:
Default Value:
Limits:
Vector:

Vector Bounds:
Null Allowed:

1.0e-9
[1.0e-12 -]
no

yes

input_load

"input load value
real

1.0e-12

no

yes

1.0e-9
[1.0e-12 -]
no

yes

(F) n

241

Description: The digital xnor gate is an n-input, single-output xnor gate that produces
an active ‘0’ value if an odd number of its inputs are also ‘1’ values. It produces
a ‘1’ output when an even number of ‘1’ values occurs on its inputs. The delays
associated with an output rise and those associated with an output fall may be
specified independently. The model also posts an input load value (in farads) based
on the parameter input load. The output of this model does not, however, respond
to the total loading it sees on its output; it will always drive the output strongly
with the specified delays. Note also that to maintain the technology-independence
of the model, any UNKNOWN input, or any floating input causes the output to

also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xnor3
.model xnor3 d_xnor(rise_delay

+

12.4.9 Tristate
NAME_TABLE:

C_Function_Name:
Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:
Parameter_ Name:

input_load

cm_d_tristate
d_tristate

0.5e-9 fall _delay = 0.3e-9
0.5e-

12)

"digital tristate buffer"

in enable
"input" "enable"
in in

d d

[d] [d]

no no

no no

delay

out
"output"
out
d

[d]
no

no

242CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Description: "delay"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no

Vector Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

Parameter_ Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: -

Null Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_load
Description: "enable load value (F)"
Data_Type: real
Default Value: 1.0e-12
Limits: -

Vector: no

Vector Bounds: -
Null_Allowed: yes

Description: The digital tristate is a simple tristate gate that can be configured to
allow for open-collector behavior, as well as standard tristate behavior. The state
seen on the input line is reflected in the output. The state seen on the enable line
determines the strength of the output. Thus, a ONE forces the output to its state
with a STRONG strength. A ZERO forces the output to go to a HI__ IMPEDANCE
strength. The delays associated with an output state or strength change cannot
be specified independently, nor may they be specified independently for rise or fall
conditions; other gate models may be used to provide such delays if needed. The
model posts input and enable load values (in farads) based on the parameters input
load and enable. The output of this model does not, however, respond to the total
loading it sees on its output; it will always drive the output with the specified
delay. Note also that to maintain the technology-independence of the model, any
UNKNOWN input, or any floating input causes the output to also go UNKNOWN.
Likewise, any UNKNOWN input on the enable line causes the output to go to an
UNDETERMINED strength value.

Example SPICE Usage:

a9 1 2 8 tri7

.model tri7 d_tristate(delay = 0.5e-9 input_load = 0.5e-12
+ enable _load = 0.5e-12)

12.4. DIGITAL MODELS

12.4.10 Pullup

NAME_TABLE:

C_Function_Name: cm_d_pullup
Spice_Model Name: d_pullup
Description: "digital pullup resistor"
PORT_TABLE:

Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]

Vector: no
Vector_Bounds: -

Null Allowed: no
PARAMETER_TABLE:
Parameter_Name: load

Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12

Limits: -

Vector: no
Vector_Bounds: -

Null Allowed: yes

Description: The digital pullup resistor is a device that emulates the behavior of an
analog resistance value tied to a high voltage level. The pullup may be used in
conjunction with tristate buffers to provide open-collector wired or constructs, or
any other logical constructs that rely on a resistive pullup common to many tristated
output devices. The model posts an input load value (in farads) based on the
parameter load.

Example SPICE Usage:
a2 9 pullupl
.model pullupl d_pullup(load = 20.0e-12)

12.4.11 Pulldown

NAME_TABLE:
C_Function_Name:
Spice_Model Name:

cm_d_pulldown
d_pulldown

Description: "digital pulldown resistor"
PORT_TABLE:

Port Name: out

Description: "output"

Direction: out

Default_Type: d

Allowed_Types: [d]

244CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector: no
Vector Bounds: -

Null Allowed: no
PARAMETER_TABLE:

Parameter Name: load
Description: "load value (F)"
Data_Type: real
Default Value: 1.0e-12
Limits: -
Vector: no
Vector Bounds: -

Null Allowed: yes

Description: The digital pulldown resistor is a device that emulates the behavior of
an analog resistance value tied to a low voltage level. The pulldown may be used
in conjunction with tristate buffers to provide open-collector wired or constructs,
or any other logical constructs that rely on a resistive pulldown common to many
tristated output devices. The model posts an input load value (in farads) based on
the parameter load.

Example SPICE Usage:
a4 9 pulldownl
.model pulldownl d_pulldown(load = 20.0e-12)

12.4.12 D Flip Flop

NAME_TABLE:

C_Function_Name: cm_d_dff

Spice_Model Name: d_dff

Description: "digital d-type flip flop"
PORT_TABLE:

Port Name: data clk
Description: "input data" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -

Null Allowed: no no
PORT_TABLE:

Port Name: set reset
Description: "asynch. set" "asynch. reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

Vector Bounds: - -
Null_Allowed: yes yes

12.4. DIGITAL MODELS

PORT_TABLE:

Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector.Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:

out

"data output"
out

d

[d]

no

yes

clk_delay

"delay from clk"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay

"delay from reset"
real

1.0e-9

[1.0e-12 -]

no

yes

data_load
"data load value (F)"
real

1.0e-12
o

;es

set load

"set load value (F)"
real
1.0e-12

no

yes

rise_delay
"rise delay"

Nout

"inverted data output"

out

d
[d]

no

yes

set_delay

"delay from set"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"

int
0

[0 2]
no

yes

clk load

"clk load value (F)"

real
1.0e-12

no

yes

reset load
"reset load (F)"
real

1.0e-12

no

yes

fall_delay
"fall delay"

245

246CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes

Description: The digital d-type flip flop is a one-bit, edge-triggered storage element that
will store data whenever the clk input line transitions from low to high (ZERO to
ONE). In addition, asynchronous set and reset signals exist, and each of the three
methods of changing the stored output of the d_ dff have separate load values and
delays associated with them. Additionally, you may specify separate rise and fall
delay values that are added to those specified for the input lines; these allow for
more faithful reproduction of the output characteristics of different IC fabrication
technologies.

Note that any UNKNOWN input on the set or reset lines immediately results in an
UNKNOWN output.

Example SPICE Usage:

a7 1 2345 6 flopl

.model flopl d_dff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

12.4.13 JK Flip Flop

NAME_TABLE:

C_Function_Name: cm_d_jkff

Spice_Model Name: d_jkff

Description: "digital jk-type flip flop"
PORT_TABLE:

Port Name: J k
Description: "j input" "k input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null Allowed: no no
PORT_TABLE:

Port Name: clk

Description: "clock"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: no

Vector Bounds: -
Null Allowed: no

12.4. DIGITAL MODELS

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:

set

"asynchronous set"
in

d

[d]

no

yes

out

"data output"
out

d

[d]

no

yes

clk_delay

"delay from clk"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay

"delay from reset"
real

1.0e-9

[1.0e-12 -]

no

yes

jk_load
"j,k load values (F)"
real

1.0e-12
o

;es
set_load

"set load value (F)"

reset

"asynchronous reset"
in

d

[d]

no

yes

Nout

"inverted data output"
out

d

[d]

no

yes

set_delay

"delay from set"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"
int

0

[0 2]

no

yes

clk load

"clk load value (F)"
real

1.0e-12

no

yes

reset_load
"reset load (F)"

247

248CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real real
Default Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes

Description: The digital jk-type flip flop is a one-bit, edge-triggered storage element

that will store data whenever the clk input line transitions from low to high (ZERO
to ONE). In addition, asynchronous set and reset signals exist, and each of the three
methods of changing the stored output of the d_jkff have separate load values and
delays associated with them. Additionally, you may specify separate rise and fall
delay values that are added to those specified for the input lines; these allow for
more faithful reproduction of the output characteristics of different IC fabrication
technologies.

Note that any UNKNOWN inputs other than j or k cause the output to go UN-
KNOWN automatically.

Example SPICE Usage:

a8 1234567 flop2

.model flop2 d_jkff(clk delay = 13.0e-9 set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

12.4.14 Toggle Flip Flop

NAME TABLE:
C_Function Name: cm d tff
Spice_Model Name: d_tff

Description: "digital toggle flip flop"
PORT_TABLE:

Port Name: t clk
Description: "toggle input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no

Vector Bounds: - -
Null Allowed: no no

12.4. DIGITAL MODELS 249

PORT_TABLE:

Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]

Vector: no no

Vector Bounds: - -

Null_ Allowed: yes yes
PORT.TABLE:

Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]

Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0

Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: t load clk load
Description: "toggle load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no

Vector Bounds: - -

Null_ Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: set_load reset_load

Description: "set load value (F)" "reset load (F)"

250CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real real
Default.Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes

Description: The digital toggle-type flip flop is a one-bit, edge-triggered storage element
that will toggle its current state whenever the clk input line transitions from low
to high (ZERO to ONE). In addition, asynchronous set and reset signals exist, and
each of the three methods of changing the stored output of the d_tff have separate
load values and delays associated with them. Additionally, you may specify separate
rise and fall delay values that are added to those specified for the input lines; these
allow for more faithful reproduction of the output characteristics of different IC
fabrication technologies.

Note that any UNKNOWN inputs other than t immediately cause the output to go
UNKNOWN.

Example SPICE Usage:

a8 2 12 4 5 6 3 flop3

.model flop3 d_tff(clk _delay = 13.0e-9 set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9 t_load = 0.2e-12)

12.4.15 Set-Reset Flip Flop

NAME TABLE:
C_Function Name: cm d _srff
Spice_Model Name: d_srff

Description: "digital set-reset flip flop"
PORT_TABLE:

Port Name: s r
Description: "set input" "reset input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]

Vector: no no

Vector Bounds: - -
Null Allowed: no no

12.4. DIGITAL MODELS

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:

clk
"clock"
in
d

[d]
no

no

set

"asynchronous set"
in

d

(d]

no

yes

out

"data output"
out

d

[d]

no

yes

clk_delay

"delay from clk"
real

1.0e-9

[1.0e-12 -]

no

yes

reset_delay

"delay from reset"
real

1.0e-9

[1.0e-12 -]

no

yes

sr_load
"set/reset loads (F)"

reset

"asynchronous reset"
in

d

[d]

no

yes

Nout

"inverted data output"
out

d

[d]

no

yes

set_delay

"delay from set"
real

1.0e-9

[1.0e-12 -]

no

yes

ic

"output initial state"
int

0

[0 2]

no

yes

clk load
"clk load value (F)"

251

252CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real real
Default Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: set load reset load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector Bounds: - -
Null_Allowed: yes yes

Description: The digital sr-type flip flop is a one-bit, edge-triggered storage element
that will store data whenever the clk input line transitions from low to high (ZERO
to ONE). The value stored (i.e., the out value) will depend on the s and r input pin
values, and will be:

out=0NE if s=0NE and r=ZERO;
out=ZERO if s=ZERO and r=0NE;
out=previous value if s=ZERO and r=ZERO;
out=UNKNOWN if s=0NE and r=0NE;

In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_srff have separate load values and delays associated
with them. You may also specify separate rise and fall delay values that are added to
those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than s and r immediately cause the output to
go UNKNOWN.

Example SPICE Usage:

a8 2 12 45 6 3 14 flop7

.model flop7 d_srff(clk_delay = 13.0e-9 set_delay = 25.0e-9

+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall _delay = 3e-9)

12.4. DIGITAL MODELS

12.4.16 D Latch

NAME_TABLE:
C_Function_Name:
Spice_Model Name:
Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

cm_d_dlatch
d _dlatch

"digital d-type latch"

data

"input data"
in

d

[d]

no

no

set
"set"
in
d

[d]
no

yes

out

"data output"
out

d

[d]

no

no

data_delay

"delay from data"
real

1.0e-9

[1.0e-12 -]

no

yes

enable_delay

"delay from enable"

real
1.0e-9
[1.0e-12 -]
no

enable

"enable input"
in

d

[d]

no

no

reset
"reset"
in

[d]

no

yes

Nout

"inverter data output"

out
d
[d]

no

no

set_delay

"delay from SET"

real
1.0e-9
[1.0e-12 -]
no

254CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds:

Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_ Name: reset_delay ic

Description: "delay from RESET" "output initial state"
Data_Type: real boolean

Default_Value: 1.0e-9 0

Limits: [1.0e-12 -] -

Vector: no no

Vector_Bounds: - -

Null Allowed: yes yes

PARAMETER_TABLE:

Parameter Name: data load enable load
Description: "data load (F)" "enable load value (F)"
Data_Type: real real

Default_Value: 1.0e-12 1.0e-12

Limits: - -

Vector: no no

Vector Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:

Parameter Name: set_load reset_load

Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no

Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector Bounds: - -

Null Allowed: yes yes

Description: The digital d-type latch is a one-bit, level-sensitive storage element that
will output the value on the data line whenever the enable input line is high (ONE).
The value on the data line is stored (i.e., held on the out line) whenever the enable
line is low (ZERO).
In addition, asynchronous set and reset signals exist, and each of the four methods of
changing the stored output of the d_ dlatch (i.e., data changing with enable=ONE,
enable changing to ONE from ZERO with a new value on data, raising set and
raising reset) have separate delays associated with them. You may also specify
separate rise and fall delay values that are added to those specified for the input

12.4. DIGITAL MODELS 255

lines; these allow for more faithful reproduction of the output characteristics of
different IC fabrication technologies.

Note that any UNKNOWN inputs other than on the data line when enable=ZERO
immediately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 4 5 6 3 14 latchl
.model latchl d_dlatch(data_delay = 13.0e-9 enable_delay = 22.0e-9

+ set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2
+ rise_delay = 10.0e-9 fall delay = 3e-9)

12.4.17 Set-Reset Latch

NAME TABLE:
C_Function_Name:
Spice_Model Name:

cm_d_srlatch
d_srlatch

Description: "digital sr-type latch"
PORT_TABLE:

Port Name:] r
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector Bounds: - -
Null Allowed: no no
PORT_TABLE:

Port Name: enable

Description: "enable"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: no

Vector_Bounds: -

Null Allowed: no

PORT_TABLE:

Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null Allowed: yes yes
PORT_TABLE:

Port Name: out Nout

Description:

"data output"

"inverted data output"

256 CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]

Vector: no no
Vector_Bounds: - -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: sr_delay

Description: "delay from s or r input change"
Data_Type: real

Default_Value: 1.0e-9

Limits: [1.0e-12 -]

Vector: no

Vector_Bounds: -

Null Allowed: yes

PARAMETER_TABLE:

Parameter Name: enable_delay set_delay
Description: "delay from enable" "delay from SET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no

Vector Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: reset_delay ic
Description: "delay from RESET" "output initial state"
Data_Type: real boolean
Default_Value: 1.0e-9 0

Limits: [1.0e-12 -] -

Vector: no no

Vector Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: sr_load enable_load
Description: "s & r input loads (F)" "enable load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -

Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: set load reset load
Description: "set load value (F)" ‘"reset load (F)"
Data_Type: real real

Default Value: 1.0e-12 1.0e-12

Limits: - -

12.4. DIGITAL MODELS

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

no

yes

rise_delay
"rise delay"
real

1.0e-9
[1.0e-12 -]
no

yes

257

no

yes

fall_delay
"fall delay"
real

1.0e-9
[1.0e-12 -]
no

yes

Description: The digital sr-type latch is a one-bit, level-sensitive storage element that
will output the value dictated by the state of the s and r pins whenever the enable
input line is high (ONE). This value is stored (i.e., held on the out line) whenever
the enable line is low (ZERO). The particular value chosen is as shown below:

s=ZER0O, r=ZER0 =>
s=ZER0, r=0NE
s=0NE, r=ZERD
s=0NE, r=0NE

out=current value (i.e.,
=> out=ZERO

=> out=0NE

=> out=UNKNOWN

not change in output)

Asynchronous set and reset signals exist, and each of the four methods of changing the
stored output of the d srlatch (i.e., s/r combination changing with enable=ONE, enable
changing to ONE from ZERO with an output-changing combination of s and r, raising
set and raising reset) have separate delays associated with them. You may also specify
separate rise and fall delay values that are added to those specified for the input lines;
these allow for more faithful reproduction of the output characteristics of different IC

fabrication technologies.

Note that any UNKNOWN inputs other than on the s and r lines when enable=ZERO
immediately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 45 6 3 14 16 latch2

.model latch2 d_srlatch(sr_delay = 13.0e-9 enable_delay

+
+
+

set_delay = 25.0e-9
reset_delay = 27.0e
rise_delay = 10.0e-

12.4.18 State Machine

NAME_TABLE:
C_Function_Name:
Spice_Model Name:
Description:

cm_d_state
d_state
"digital state machine"

22.0e-9

-9 ic = 2
9 fall_delay

3e-9)

PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Description:
Data_Type:
Default Value:
Limits:
Vector:

Vector Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:

PARAMETER_TABLE:

Parameter_ Name:
Description:
Data_Type:

in
"input"
in

d

[d]

yes

(1 -]

yes

reset
"reset"
in
d

[d]
no

yes

clk_delay

"delay from CLK"
real

1.0e-9

[1.0e-12 -]

no

yes

Parameter Name:

258 CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

clk
"clock"
in

d

[d]
no

no

out
"output"
out

d

[d]

yes

(1 -]

no

reset_delay
"delay from RESET"
real

1.0e-9

[1.0e-12 -]

no

yes

state file

"state transition specification file name"

string
"state.txt"

no

no

reset_state

"default state on RESET & at DC"

int
0

no

no

input_load

"input loading capacitance (F)"

real

12.4. DIGITAL MODELS 259

Default_Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: -

Null Allowed: yes
PARAMETER_TABLE:

Parameter_ Name: clk_load
Description: "clock loading capacitance (F)"
Data_Type: real
Default Value: 1.0e-12
Limits: -

Vector: no

Vector Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:

Parameter Name: reset_load
Description: "reset loading capacitance (F)"
Data_Type: real
Default Value: 1.0e-12
Limits: -

Vector: no
Vector_Bounds: -

Null Allowed: yes

Description: The digital state machine provides for straightforward descriptions of clocked

combinational logic blocks with a variable number of inputs and outputs and with
an unlimited number of possible states. The model can be configured to behave as
virtually any type of counter or clocked combinational logic block and can be used
to replace very large digital circuit schematics with an identically functional but
faster representation.
The d state model is configured through the use of a state definition file (state.in)
that resides in a directory of your choosing. The file defines all states to be under-
stood by the model, plus input bit combinations that trigger changes in state. An
example state.in file is shown below:

——————————— begin file -———————--——-

* This is an example state.in file. This file

* defines a simple 2-bit counter with one input. The

* value of this input determines whether the counter counts
* up (in = 1) or down (in = 0).

0

Os 0s 0 -> 3

1 ->1

10s1z 0 >0
1 > 2

21z 0s 0 > 1
1 ->3

31z 1z 0 -> 2
31z 1z 1 >0

260CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Several attributes of the above file structure should be noted. First, all lines in the file
must be one of four types. These are

1. A comment, beginning with a ‘*” in the first column.

2. A header line, which is a complete description of the current state, the outputs
corresponding to that state, an input value, and the state that the model will
assume should that input be encountered. The first line of a state definition must
always be a header line.

3. A continuation line, which is a partial description of a state, consisting of an input
value and the state that the model will assume should that input be encountered.
Note that continuation lines may only be used after the initial header line definition
for a state.

4. A line containing nothing but white-spaces (space, form-feed, newline, carriage re-
turn, tab, vertical tab).

A line that is not one of the above will cause a file-loading error. Note that in the example
shown, whitespace (any combination of blanks, tabs, commas) is used to separate values,
and that the character —-> is used to underline the state transition implied by the input
preceding it. This particular character is not critical in of itself, and can be replaced with
any other character or non-broken combination of characters that you prefer (e.g. ==>,
>> 7.7 resolves_to, etc.)

The order of the output and input bits in the file is important; the first column is always
interpreted to refer to the 'zeroth’ bit of input and output. Thus, in the file above, the
output from state 1 sets out[0] to Os, and out[1] to 1z.

The state numbers need not be in any particular order, but a state definition (which
consists of the sum total of all lines that define the state, its outputs, and all methods by
which a state can be exited) must be made on contiguous line numbers; a state definition
cannot be broken into sub-blocks and distributed randomly throughout the file. On the
other hand, the state definition can be broken up by as many comment lines as you desire.

Header files may be used throughout the state.in file, and continuation lines can be dis-
carded completely if you so choose: continuation lines are primarily provided as a conve-
nience.

Example SPICE Usage:

ad [2 34 5] 112 [22 23 24 25 26 27 28 29] statel

.model statel d_state(clk_delay = 13.0e-9 reset_delay = 27.0e-9

+ state file = "newstate.txt" reset_state = 2)

Note: The file named by the parameter filename in state _file="filename' is sought
after according to a search list described in12.1.3.

12.4. DIGITAL MODELS

NAME_TABLE:
C_Function_Name:

Spice_Model Name:

Description:
PORT_TABLE:
Port Name:
Description:
Direction:
Default_Type:
Allowed_Types:
Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

12.4.19 Frequency Divider

cm_d_fdiv
d_fdiv

"digital frequency divider"

freq_in

"frequency input"

in

d
[d]

no

no

div_factor
"divide factor"
int

2

[1 -]

no

yes

i _count

freq_out

"frequency output"

out
d
[d]

no

no

high cycles

261

"# of cycles for high out"

int

1

[1 div_factor-1]
no

yes

"divider initial count value"

int
0

no

yes

rise_delay
"rise delay"
real

1.0e-9
[1.0e-12 -]
yes

in

yes

freq_in load

"freq_in load value (F)"

real
1.0e-12

no

fall_delay
"fall delay"
real

1.0e-9
[1.0e-12 -]
yes

in

yes

262CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: -
Null Allowed: yes

Description: The digital frequency divider is a programmable step-down divider that
accepts an arbitrary divisor (div_ factor), a duty-cycle term (high_cycles), and an
initial count value (i_count). The generated output is synchronized to the rising
edges of the input signal. Rise delay and fall delay on the outputs may also be
specified independently.

Example SPICE Usage:

a4 3 7 divider

.model divider d_fdiv(div_factor = 5 high cycles = 3
+ i_count = 4 rise_delay = 23e-9
+ fall delay = 9e-9)

12.4.20 RAM

NAME_TABLE:

C_Function_Name: cm_d _ram

Spice_Model Name: d_ram

Description: "digital random-access memory"
PORT_TABLE:

Port Name: data_in data_out
Description: "data input line(s)" "data output line(s)"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector Bounds: [1 -] data_in
Null Allowed: no no
PORT_TABLE:

Port Name: address write_en
Description: "address input line(s)" "write enable line"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -

Null Allowed: no no
PORT_TABLE:

Port Name: select

Description: "chip select line(s)"

Direction: in

Default_Type: d

Allowed_Types: [d]

Vector: yes

Vector_ Bounds: [1 16]

Null Allowed: no

12.4. DIGITAL MODELS

PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter_ Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:

select value

"decimal active value for select line comparison"

int

1

[0 32767]
no

yes

ic

"initial bit state @ dc"
int

2

[0 2]

no

yes

read_delay

263

"read delay from address/select/write.en active"

real
100.0e-9
[1.0e-12 -]
no

yes

data load

"data_in load value (F)"
real

1.0e-12

no

yes

select load

"select load value (F)"
real

1.0e-12

no

yes

enable_load
"enable line load value

address_load

"addr. load value (F)"
real

1.0e-12

no

yes

(F) n

264CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Data_Type: real
Default Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -

Null Allowed: yes

Description: The digital RAM is an M-wide, N-deep random access memory element
with programmable select lines, tristated data out lines, and a single write/~read
line. The width of the RAM words (M) is set through the use of the word width
parameter. The depth of the RAM (N) is set by the number of address lines input
to the device. The value of N is related to the number of address input lines (P) by
the following equation:

2P =N

There is no reset line into the device. However, an initial value for all bits may be
specified by setting the ic parameter to either 0 or 1. In reading a word from the
ram, the read delay value is invoked, and output will not appear until that delay
has been satisfied. Separate rise and fall delays are not supported for this device.
Note that UNKNOWN inputs on the address lines are not allowed during a write.
In the event that an address line does indeed go unknown during a write, the entire
contents of the ram will be set to unknown. This is in contrast to the data in lines
being set to unknown during a write; in that case, only the selected word will be
corrupted, and this is corrected once the data lines settle back to a known value.
Note that protection is added to the write en line such that extended UNKNOWN
values on that line are interpreted as ZERO values. This is the equivalent of a read
operation and will not corrupt the contents of the RAM. A similar mechanism exists
for the select lines. If they are unknown, then it is assumed that the chip is not
selected.

Detailed timing-checking routines are not provided in this model, other than for
the enable delay and select delay restrictions on read operations. You are advised,
therefore, to carefully check the timing into and out of the RAM for correct read
and write cycle times, setup and hold times, etc. for the particular device they are
attempting to model.

Example SPICE Usage:
a4 [3456] [3456] [12 13 14 15 16 17 18 19] 30 [22 23 24] ram?2
.model ram2 d_ram(select_value = 2 ic = 2 read_delay = 80e-9)

12.4.21 Digital Source

NAME TABLE:

C_Function_Name: cm_d_source
Spice_Model Name: d_source

Description: "digital signal source"
PORT_TABLE:

Port Name: out

Description: "output"

12.4. DIGITAL MODELS

Direction:
Default_Type:
Allowed_Types:
Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default Value:
Limits:

Vector:
Vector_Bounds:
Null Allowed:
PARAMETER_TABLE:
Parameter Name:
Description:
Data_Type:
Default_Value:
Limits:

Vector:

Vector Bounds:
Null Allowed:

out

[d]

yes
no

input_file

"digital input vector filename"

string
"source.txt"

no

no

input_load

"input loading capacitance
real

1.0e-12

no

no

(F) "n

Description: The digital source provides for straightforward descriptions of digital signal
vectors in a tabular format. The model reads input from the input file and, at the
times specified in the file, generates the inputs along with the strengths listed. The
format of the input file is as shown below. Note that comment lines are delineated
through the use of a single ‘*’ character in the first column of a line. This is similar
to the way the SPICE program handles comments.

* T cCc n n n
* 1 1l o o o
* m o d d d
* e cC e e e
* k a b c .
0.0000 Uu Uu Us Uu
1.234e-9 O0s 1s 1s Oz
1.376e-9 0s Os 1s Oz
2.be-7 1s 0Os 1s Oz
2.5006e-7 1s 1s 1s Oz
5.0e-7 Os 1s 1s Oz

Note that in the example shown, whitespace (any combination of blanks, tabs, commas)
is used to separate the time and state/strength tokens. The order of the input columns
is important; the first column is always interpreted to mean ‘time’. The second through
the N’th columns map to the out[0] through out[N-2] output nodes. A non-commented

266CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

line that does not contain enough tokens to completely define all outputs for the digital
source will cause an error. Also, time values must increase monotonically or an error will
result in reading the source file.

Errors will also occur if a line exists in source.txt that is neither a comment nor vector
line. The only exception to this is in the case of a line that is completely blank; this is
treated as a comment (note that such lines often occur at the end of text within a file;
ignoring these in particular prevents nuisance errors on the part of the simulator).

Example SPICE Usage:
a3 [234567 89 10 11 12 13 14 15 16 17] input_vector
.model input_vector d_source(input_file = "source_simple.text")

Note: The file named by the parameter filename in input_file="filename' is sought
after according to a search list described in12.1.3.

12.4.22 LUT

NAME_TABLE:

C Function Name: c¢m_d lut

Spice_Model Name: d_lut

Description: "digital n-input look-up table gate"
PORT_TABLE:

Port_Name: in out

Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]

Vector: yes no
Vector_Bounds: (1 -] -

Null Allowed: no no
PARAMETER_TABLE:

Parameter_ Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_Name: input_load

Description: "input load value (F)"
Data_Type: real

Default_Value: 1.0e-12

Limits: -

Vector: no

Vector_Bounds:

12.4. DIGITAL MODELS 267

Null Allowed: yes
PARAMETER_TABLE:
Parameter Name: table_values

Description: "lookup table values"
Data_Type: string

Default_Value: "o

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: no

Description: The lookup table provides a way to map any arbitrary n-input, 1-output
combinational logic block to XSPICE. The inputs are mapped to the output using
a string of length 2 n. The string may contain values "0", "1" or "X", corresponding
to an output of low, high, or unknown, respectively. The outputs are only mapped
for inputs which are valid logic levels. Any unknown bit in the input vector will
always produce an unknown output. The first character of the string table values
corresponds to all inputs value zero, and the last (27n) character corresponds to all
inputs value one, with the first signal in the input vector being the least significant
bit. For example, a 2-input lookup table representing the function (A * B) (that is,
A AND B), with input vector [A B] can be constructed with a table_values string
of "0001"; function (~A * B) with input vector [A B] can be constructed with a
table_values string of "0010". The delays associated with an output rise and those
associated with an output fall may be specified independently. The model also posts
an input load value (in farads) based on the parameter input_load. The output of
this model does not respond to the total loading it sees on the output; it will always
drive the output strongly with the specified delays.

Example SPICE Usage:

* LUT encoding 3-bit parity function

a4 [1 2 3] 5 lut_pty3_1

.model lut_pty3_1 d_lut(table_values = "01101001"
+ input_load 2.0e-12)

12.4.23 General LUT

NAME_TABLE:

C_Function_Name: cm_d_genlut

Spice_Model Name: d_genlut

Description: "digital n-input x m-output look-up table gate"
PORT_TABLE:

Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes

Vector_Bounds: - -

268CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Null Allowed: no no
PARAMETER_TABLE:

Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: yes yes
Vector_Bounds: - -

Null Allowed: yes yes
PARAMETER_TABLE:

Parameter_ Name: input_load input_delay
Description: "input load value (F)" "input delay"
Data_Type: real real
Default_Value: 1.0e-12 0.0
Limits: - -
Vector: yes yes
Vector Bounds: - -

Null_ Allowed: yes yes
PARAMETER_TABLE:

Parameter Name: table_values

Description: "lookup table values"

Data_Type: string

Default Value: "o

Limits: -

Vector: no

Vector_Bounds: -

Null Allowed: no

Description: The lookup table provides a way to map any arbitrary n-input, m-output
combinational logic block to XSPICE. The inputs are mapped to the output using
a string of length m * (27 n). The string may contain values "0", "1", 'X", or "Z",
corresponding to an output of low, high, unknown, or high-impedance, respectively.
The outputs are only mapped for inputs which are valid logic levels. Any unknown
bit in the input vector will always produce an unknown output. The character
string is in groups of (27 n) characters, one group corresponding to each output pin,
in order. The first character of a group in the string table_values corresponds to
all inputs value zero, and the last (27n) character in the group corresponds to all
inputs value one, with the first signal in the input vector being the least significant
bit. For example, a 2-input lookup table representing the function (A * B) (that is,
A AND B), with input vector [A B] can be constructed with a table_values string
of "0001"; function (~A * B) with input vector [A B] can be constructed with a
"table values"' string of "0010". The delays associated with each output pin’s rise
and those associated with each output pin’s fall may be specified independently. The
model also posts independent input load values per input pin (in farads) based on
the parameter input_load. The parameter input_delay provides a way to specify
additional delay between each input pin and the output. This delay is added to the
rise- or fall-time of the output. The output of this model does not respond to the

12.5. PREDEFINED NODE TYPES FOR EVENT DRIVEN SIMULATION 269

total loading it sees on the output; it will always drive the output strongly with the
specified delays.

Example SPICE Usage:

* LUT encoding 3-bit parity function

a4 [1 2 3] [5] lut_pty3_1

.model lut_pty3_1 d_genlut(table_values = "01101001"

+ input_load [2.0e-12])

* LUT encoding a tristate inverter function (en in out)
a2 [1 2] [3] lut_triinv_1

.model lut_triinv_1 d_genlut(table_values = "Z1Z0")

* LUT encoding a half-adder function (A B Carry Sum)

a8 [1 2] [3 4] lut_halfadd 1

.model lut_halfadd_1 d_genlut(table_values = "00010110"
+ rise_delay [1.5e-9 1.0e-9] fall delay [1.5e-9 1.0e-9 1)

12.5 Predefined Node Types for event driven simu-
lation

The following predefined node types are included with the XSPICE simulator. These
should provide you not only with valuable event-driven modeling capabilities, but also
with examples to use for guidance in creating new UDN (user defined node) types. You
may access these node data by the plot (17.5.49) or eprint (17.5.26) commands.

12.5.1 Digital Node Type

The ‘digital’ node type is directly built into the simulator. 12 digital node values are
available. They are described by a two character string (the state/strength token). The
first character (0, 1, or U) gives the state of the node (logic zero, logic one, or unknown
logic state). The second character (s, r, z, u) gives the "strength' of the logic state (strong,
resistive, hi-impedance, or undetermined). So these are the values we have: 0s, 1s, Us,
Or, 1r, Ur, Oz, 1z, Uz, Ou, 1u, Uu.

12.5.2 Real Node Type

The ‘real’ node type provides for event-driven simulation with double-precision floating
point data. This type is useful for evaluating sampled-data filters and systems. The
type implements all optional functions for User-Defined Nodes, including inversion and
node resolution. For inversion, the sign of the value is reversed. For node resolution,
the resultant value at a node is the sum of all values output to that node. The node is
implemented as a user defined node in ngspice/src/xspice/icm /xtraevt/real.

270CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

12.5.3 Int Node Type

The ‘int” node type provides for event-driven simulation with integer data. This type is
useful for evaluating round-off error effects in sampled-data systems. The type implements
all optional functions for User-Defined Nodes, including inversion and node resolution. For
inversion, the sign of the integer value is reversed. For node resolution, the resultant value
at a node is the sum of all values output to that node. The node is implemented as a user
defined node in ngspice/src/xspice/icm/xtraevt/int.

12.5.4 (Digital) Input/Output

The analog code models use the standard (analog) nodes provided by ngspice and thus
are using all the commands for sourcing, storing, printing, and plotting data.

1/O for event nodes (digital, real, int, and UDNs) is offered by the following tools: For out-
put you may use the plot (17.5.49) or eprint (17.5.26) commands, as well as edisplay
(17.5.25) and eprved (17.5.27). The latter writes all node data to a VCD file (a dig-
ital standard interface) that may be analyzed by viewers like gtkwave. For input, you
may create a test bench with existing code models (oscillator (12.3.3), frequency divider
(12.4.19), state machine (12.4.18) etc.). Reading data from a file is offered by d_ source
(12.4.21). Some comments and hints have been provided by Sdaau. You may also use
the analog input from file, (filesource 12.2.8) and convert its analog input to the digital
type by the adc_bridge (12.3.2). If you want reading data from a VCD file, please have
a look at ngspice tips and examples forum and apply a python script provided by Sdaau
to translate the VCD data to d_ source or filesource input.

http://en.wikipedia.org/wiki/Value_change_dump
http://gtkwave.sourceforge.net/
https://sourceforge.net/p/ngspice/discussion/ngspice-tips/thread/3e193172/
http://en.wikipedia.org/wiki/Value_change_dump
https://sourceforge.net/p/ngspice/discussion/ngspice-tips/thread/635bb14a/

Chapter 13

Verilog A Device models

13.1 Introduction

New compact device models today are released as Verilog-A code. Ngspice applies ADMS
to translate the va code into ngspice C syntax. Currently a limited number of Verilog-A
models is supported: HICUM level0 (HICUM model web page), MEXTRAM (MEX-
TRAM model web page), EKV2.6 (EKV model web page) and PSP (NXP PSP web
site).

13.2 ADMS

ADMS is a code generator that converts electrical compact device models specified in high-
level description language into ready-to-compile C code for the API of spice simulators.
Based on transformations specified in XML language, ADMS transforms Verilog-AMS
code into other target languages. Here we use it to to translate the va code into ngspice
C syntax.

To make use of it, a set of ngspice specific XML files is distributed with ngspice in
ngspice\src\spicelib\devices\adms\admst. Their translation is done by the code generator
executable admsXml (see below).

13.3 How to integrate a Verilog-A model into ngspice

13.3.1 How to setup a *.va model for ngspice

Unfortunately most of the above named models’ licenses are not compatible to free soft-
ware rules as defined by DFSG. Therefore since ngspice-28 the va model files are no
longer part of the standard ngspice distribution. They may however be downloaded as
a 7z archive from the ngspice-28 file distribution folder. After downloading, you may
expand the zipped files into your ngspice top level folder. The models enable dc, ac, and
tran simulations. Noise simulation is not supported.

Other (foreign) va model files will not compile without code tweaking, due to the limited
capabilities of our ADMS installation.

271

http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
http://mextram.ewi.tudelft.nl/
http://mextram.ewi.tudelft.nl/
http://ekv.epfl.ch/
https://www.nxp.com/pages/model-psp:MODELPSP
https://www.nxp.com/pages/model-psp:MODELPSP
https://wiki.debian.org/DFSGLicense
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/28/

272 CHAPTER 13. VERILOG A DEVICE MODELS

13.3.2 Adding admsXml to your build environment

The actual admsXml code is maintained by the QUCS project and is available at GitHub.

Information on how to compile and install admsXml for Linux or Cygwin is available on
the GitHub page. For MS Windows users admsXml.exe is available for download here.
You may copy admsXml.exe to your MSYS2 setup into the folder msys64\mingw64\bin,
if 64 bit compilation is intended.

More information, though partially outdated, is obtainable from the ngspice web pages.

13.3.3 Compile ngspice with ADMS

In the top level ngspice folder there are two compile scripts compile_min.sh and com-
pile_linux.sh. They contain information how to compile ngspice with ADMS. You will
have to run autogen.sh with the adms flag

./autogen.sh - -adms

In addition you have to add - -enable-adms to the ./configure command. Please check 32.1
for prerequisites and further details.

Compiling ngspice with ADMS with MS Visual Studio is not supported.

http://qucs.sourceforge.net/
https://github.com/Qucs/ADMS
https://sourceforge.net/projects/mot-adms/
http://ngspice.sourceforge.net/admshowto.html

Chapter 14

Mixed-Level Simulation (ngspice
with TCAD)

14.1 Cider

Ngspice implements mixed-level simulation through the merging of its code with CIDER
(details see Chapt. 30).

CIDER is a mixed-level circuit and device simulator that provides a direct link between
technology parameters and circuit performance. A mixed-level circuit and device simula-
tor can provide greater simulation accuracy than a stand-alone circuit or device simulator
by numerically modeling the critical devices in a circuit. Compact models can be used
for noncritical devices.

CIDER couples the latest version of SPICE3 (version 3F.2) [JOHNO92] to a internal C-
based device simulator, DSIM. SPICE3 provides circuit analyses, compact models for
semiconductor devices, and an interactive user interface. DSIM provides accurate, one-
and two-dimensional numerical device models based on the solution of Poisson’s equation,
and the electron and hole current-continuity equations. DSIM incorporates many of the
same basic physical models found in the the Stanford two-dimensional device simulator
PISCES [PINTS5]. Input to CIDER consists of a SPICE-like description of the circuit and
its compact models, and PISCES-like descriptions of the structures of numerically modeled
devices. As a result, CIDER should seem familiar to designers already accustomed to
these two tools. For example, SPICE3F.2 input files should run without modification,
producing identical results.

CIDER is based on the mixed-level circuit and device simulator CODECS [MAYAS8S8] and
is a replacement for this program. The basic algorithms of the two programs are the
same. Some of the differences between CIDER and CODECS are described below. The
CIDER input format has greater flexibility and allows increased access to physical model
parameters. New physical models have been added to allow simulation of state-of-the-art
devices. These include transverse field mobility degradation [GATE9(] that is important
in scaled-down MOSFETSs and a polysilicon model for poly-emitter bipolar transistors.
Temperature dependence has been included for most physical models over the range from
-50°C to 150°C. The numerical models can be used to simulate all the basic types of
semiconductor devices: resistors, MOS capacitors, diodes, BJTs, JFETs and MOSFETs.
BJTs and JFETSs can be modeled with or without a substrate contact. Support has been

273

274 CHAPTER 14. MIXED-LEVEL SIMULATION (NGSPICE WITH TCAD)

added for the management of device internal states. Post-processing of device states
can be performed using the control language user interface of ngspice (formerly called
NUTMEG in SPICE3). Previously computed states can be loaded into the program to
provide accurate initial guesses for subsequent analyses. Finally, numerous small bugs
have been discovered and fixed, and the program has been ported to a wider variety of
computing platforms.

Berkeley tradition calls for the naming of new versions of programs by affixing a (number,
letter, number) triplet to the end of the program name. Under this scheme, CIDER should
instead be named CODECS2A.1. However, tradition has been broken in this case because
major incompatibilities exist between the two programs and because it was observed that
the acronym CODECS is already used in the analog design community to refer to coder-
decoder circuits.

Details of the basic semiconductor equations and the physical models used by CIDER are
not provided in this manual. Unfortunately, no other single source exists that describes
all of the relevant background material. Comprehensive reviews of device simulation can
be found in [PINT90] and the book [SELB84]. CODECS and its inversion-layer mobility
model are described in [MAYAS88] and LGATE90], respectively. PISCES and its models
are described in [PINT85]. Temperature dependencies for the PISCES models used by
CIDER are available in [SOLL90].

14.2 GSS, Genius

For Linux users the cooperation of the TCAD software GSS with ngspice might be of
interest, see http://ngspice.sourceforge.net/gss.html. This project is no longer maintained
however, but has moved into the Genius simulator, still available as open source cogenda
genius.

http://ngspice.sourceforge.net/gss.html
http://www.cogenda.com/article/download
http://www.cogenda.com/article/download

Chapter 15

Analyses and Output Control (batch
mode)

The command lines described in this chapter are used to specify analyses and outputs
within the circuit description file. They start with a ‘.’ (dot commands). Specifying
analyses and plots (or tables) in the input file with dot commands is used with batch
runs. Batch mode is entered when either the -b option is given upon starting ngspice

ngspice -b -r rawfile.raw circuitfile.cir
or when the default input source is redirected from a file (see also Chapt. 16.4.1).
ngspice < circuitfile.cir

In batch mode, the analyses specified by the control lines in the input file (e.g. .ac,
.tran, etc.) are immediately executed. If the -r rawfile option is given then all data
generated is written to a ngspice rawfile. The rawfile may later be read by the interactive
mode of ngspice using the load command (see 17.5.41). In this case, the .save line (see
15.6) may be used to record the value of internal device variables (see Appendix, Chapt.
31).

If a rawfile is not specified, then output plots (in ‘line-printer’ form) and tables can be
printed according to the .print, .plot, and .four control lines, described in Chapt.
15.6.

If ngspice is started in interactive mode (see Chapt. 16.4.2), like
ngspice circuitfile.cir

and no control section (.controlendc, see 16.4.3) is provided in the circuit file, the
dot commands are not executed immediately, but are waiting for manually receiving the
command run.

15.1 Simulator Variables (.options)

Various parameters of the simulations available in Ngspice can be altered to control the
accuracy, speed, or default values for some devices. These parameters may be changed
via the option command (described in Chapt. 17.5.48) or via the .options line:

275

276 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form:
.options optl opt2 ... (or opt=optval ...)
Examples:

.options reltol=.005 trtol=8

The options line allows the user to reset program control and user options for specific
simulation purposes. Options specified to Ngspice via the option command (seel7.5.48)
are also passed on as if specified on a .options line. Any combination of the following
options may be included, in any order. ‘x’ (below) represents some positive number.

15.1.1 General Options

ACCT causes accounting and run time statistics to be printed.
NOACCT no printing of statistics, no printing of the Initial Transient Solution.

NOINIT suppresses only printing of the Initial Transient Solution, maybe combined
with ACCT.

LIST causes the summary listing of the input data to be printed.
NOMOD suppresses the printout of the model parameters.
NOPAGE suppresses page ejects.

NODE causes the printing of the node table.

NOREFVALUE suppresses printing of reference values, when ngspice has been com-
piled with configure option --enable-ndev.

OPTS causes the option values to be printed.

SEED=val|random Sets the seed value of the random number generator. val may be
any integer number greater than 0. As an alternative, random will set the seed
value to the current Unix epoch time, which is the time in seconds since 1.1.1970
excluding leap seconds.

SEEDINFO will print the seed value when it has been set to a new integer number.

TEMP=x Resets the operating temperature of the circuit. The default value is 27 °C'
(300K). TEMP can be overridden per device by a temperature specification on any

temperature dependent instance. May also be generally overridden by a .TEMP
card (2.12).

TNOM=x resets the nominal temperature at which device parameters are measured.
The default value is 27 °C' (300 deg K). TNOM can be overridden by a specification
on any temperature dependent device model.

15.1. SIMULATOR VARIABLES (.OPTIONS) 277

WARN=1|0 enables or turns of SOA (Safe Operating Area) voltage warning messages
(default: 0).

MAXWARNS=x specifies the maximum number of SOA (Safe Operating Area) warn-
ing messages per model (default: 5).

SAVECURRENTS save currents through all terminals of the following devices: M, J,
Q,D,R,C, L, B, F, G, W, S, T (see 2.1.3). Recommended only for small circuits,
because otherwise memory requirements explode and simulation speed suffers. See
15.7 for more details.

15.1.2 OP and DC Solution Options

The following options control properties pertaining to DC and OP (operating point)
analyses and algorithms. Since transient analysis (15.1.4) is based on OP, many of the
options affect transient simulation as well. AC analysis (15.1.3) can be performed only
when a stable operating point has been found.

ABSTOL=x resets the absolute current error tolerance of the program. The default
value is 1 pA.

GMIN=x resets the value of GMIN, the minimum conductance allowed by the program.
The default value is 1.0e-12.

GMINSTEPS=x [*] sets the number of Gmin steps to be attempted. If the value is set
to zero, the standard gmin stepping algorithm is skipped. The standard behavior
is that gmin stepping is tried before going to the source stepping algorithm.

ITL1=x resets the dc iteration limit. The default is 100.
ITL2=x resets the dc transfer curve iteration limit. The default is 50.

KEEPOPINFO Retain the operating point information when either an AC, Distortion,
or Pole-Zero analysis is run. This is particularly useful if the circuit is large and
you do not want to run a (redundant) .0P analysis.

NOOPITER Go directly to gmin stepping, skipping the first iteration.

PIVREL=x resets the relative ratio between the largest column entry and an accept-
able pivot value. The default value is 1.0e-3. In the numerical pivoting algo-
rithm the allowed minimum pivot value is determined by EPSREL = AMAX1(PIVREL -
MAXVAL, PIVTOL) where MAXVAL is the maximum element in the column where a
pivot is sought (partial pivoting).

PIVTOL=x resets the absolute minimum value for a matrix entry to be accepted as a
pivot. The default value is 1.0e-13.

RELTOL=x resets the relative error tolerance of the program. The default value is
0.001 (0.1%).

278 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

RSHUNT=x introduces a resistor from each analog node to ground. The value of the
resistor should be high enough to not interfere with circuit operations. The XSPICE
option has to be enabled (see 32.1.7) .

VNTOL=x resets the absolute voltage error tolerance of the program. The default value
is 1 uV.

15.1.2.1 Matrix Conditioning info

In SPICE-based simulators, specific problems arise with certain circuit topologies. One
issue is the absence of a DC path to ground at some node. This may happen when two
capacitors are connected in series with no other connection at the common node, or when
code models are cascaded. The result is an ill-conditioned or nearly singular matrix that
prevents the simulation from completing. Configuring with XSPICE introduces the rshunt
option to help eliminate this problem. The option inserts resistors to ground at all the
analog nodes in the circuit. In general, the value of rshunt is set to some high resistance
(e.g. 1000 M2 or greater) so that the operation of the circuit is essentially unaffected but
the matrix problems are corrected. If a ‘no DC path to ground’ or a ‘matrix is nearly
singular’ error message is encountered, add the following .option card to the circuit deck:

.option rshunt = 1.0el2

Usually a value of 1 TQ is sufficient to correct the problem. In bad cases one can try
lowering the value to 10 GS2 or even 1 GS2.

A different matrix conditioning problem occurs if an inductor is placed in parallel to a
voltage source. The AC simulation will fail, because it is preceded by an OP analysis.
Option NOOPAC (15.1.3) will help if the circuit is linear. However, if the circuit is non-
linear the OP analysis is essential. In such a case, adding a small resistor (e.g. 0.1mQ2) in
series to the inductor will help to obtain convergence.

.option rseries = 1.0e-4

adds a series resistor to each inductor in the circuit. Be careful when using behavioral
inductors (see 3.3.13), as the result may become unpredictable.

.option cshunt = 1.3e-13

adds a capacitor from each voltage node in the circuit to ground.

15.1.3 AC Solution Options

NOOPAC Do not run an operating point (OP) analysis prior to an AC analysis. This
option requires that the circuit is linear, 7.e. consists only of R, L, and C devices,
independent V, I sources and linear dependent E, G, H, and F sources (without poly
statement, non-behavioral). If a non-linear device is detected, the OP analysis is
executed automatically. This option is of interest e.g. in nested LC circuits where
no series resistance for L devices is present. During the OP analysis an ill-formed
matrix may be encountered, causing the simulator to abort with an error message.
It is also useful if you have very large linear arrays (10000 nodes and more), where
simulation speedup by a factor of 10 may be achieved.

15.1. SIMULATOR VARIABLES (.OPTIONS) 279

15.1.4 Transient Analysis Options

AUTOSTOP stops a transient analysis after successfully calculating all functions (15.4)
specified with the dot command .meas. Autostop is not available with the meas
(17.5.43) command used in control mode.

CHGTOL=x resets the charge tolerance of the program. The default value is 1.0e-14.
CONVSTEP=x relative step limit applied to code models.
CONVABSSTEP=x absolute step limit applied to code models.

INTERP interpolates output data onto fixed time steps on a TSTEP grid (15.3.9). Uses
linear interpolation between previous and next time values. Simulation itself is not
influenced by this option. This option can be used in all simulation modes (batch,
control or interactive, 16.4). It may drastically reduce memory requirements in con-
trol mode, and file size in batch mode, but care is needed not to undersample the out-
put data. See also the command linearize (17.5.39) that achieves a similar result
by post-processing the data in control mode. The Ngspice/examples/xspice/delta-
sigma/delta-sigma-1.cir example demonstrates how INTERP reduces memory re-
quirements and speeds up plotting.

ITL3=x resets the lower transient analysis iteration limit. The default value is 4. (Note:
not implemented in Spice3).

ITL4=x resets the transient analysis time-point iteration limit. The default is 10.

ITL5=x resets the transient analysis total iteration limit. The default is 5000. Set
ITL5=0 to omit this test. (Note: not implemented in Spice3).

ITL6=x [*| synonym for SRCSTEPS.
MAXEVITER=x sets the maximum number of event iterations per analysis point.

MAXOPALTER=x specifies the maximum number of analog/event alternations that
the simulator will use to solve a hybrid circuit.

MAXORD=x [*] specifies the maximum order for the numerical integration method
used by SPICE. Possible values for the Gear method are from 2 (the default) to 6.
Using the value 1 with the trapezoidal method specifies backward Euler integration.

METHOD=name sets the numerical integration method used by SPICE. Possible
names are ‘Gear’ or ‘trapezoidal’ (or just ‘trap’). The default is trapezoidal.

NOOPALTER=TRUE|FALSE if set to false, alternations between analog/event are
enabled.

RAMPTIME=x During source stepping, this option sets the rate of change of indepen-
dent supplies. It also affects code model inductors and capacitors that have initial
conditions specified.

SRCSTEPS=x [*] a non-zero value causes SPICE to use a source-stepping method to
find the DC operating point. The value specifies the number of steps.

280 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

TRTOL=x resets the transient error tolerance. The default value is 7. This parameter
is an estimate of the factor by which SPICE overestimates the actual truncation
error. If XSPICE is configured and ’A’ devices are included, the value is internally
set to 1 for higher precision. This slows down transient analysis by a factor of two.

XMU=x sets the damping factor for trapezoidal integration. The default value is
XMU=0.5. A value < 0.5 may be chosen. Even a small reduction, e.g. to 0.495,
may already suppress trap ringing. The reduction has to be set carefully in order
not to excessively damp circuits that are prone to ringing or oscillation, which might
lead the user to believe that the circuit is stable.

15.1.5 ELEMENT Specific options

BADMOS3 Use the older version of the MOS3 model with the ‘kappa’ discontinuity.
DEFAD=x resets the value for MOS drain diffusion area; the default is 0.
DEFAS=x resets the value for MOS source diffusion area; the default is 0.
DEFL=x resets the value for MOS channel length; the default is 100 um.
DEFW=x resets the value for MOS channel width; the default is 100 um.

SCALE=x set the element scaling factor for geometric element parameters whose default
unit is meters. As an example: scale=1u and a MOSFET instance parameter W=10
will result in a width of 10um for this device. An area parameter AD=20 will result
in 20e — 12 m2. Following instance parameters are scaled:

o Resistors and Capacitors: W, L

e Diodes: W, L, Area

o JFET, MESFET: W, L, Area

« MOSFET: W, L, AS, AD, PS, PD, SA, SB, SC, SD

15.1.6 Transmission Lines Specific Options

TRYTOCOMPACT Applicable only to the LTRA model (see 6.2.1). When specified,
the simulator tries to condense an LTRA transmission line’s past history of input
voltages and currents.

15.1.7 Precedence of option and .options commands

There are various ways to set the above mentioned options in Ngspice. If no option
or .options lines are set by the user, internal default values are given for each of the
simulator variables.

You may set options in the init files spinit or .spiceinit via the option command (see
17.5.48). The values given there will supersede the default values. If you set options via

15.2. INITIAL CONDITIONS 281

the .options line in your input file, their values will supersede the default and init file
data. Finally, if you set options inside a .controlendc section, these values will
again supersede any simulator variables given so far.

15.2 Initial Conditions

15.2.1 .NODESET: Specify Initial Node Voltage Guesses

General form:

.nodeset v(nodnum)=val v(nodnum)=val
.nodeset all=val

Examples:

.nodeset v(12)=4.5 v(4)=2.23
.nodeset all=1.5

The .nodeset line helps the program find the DC or initial transient solution by making
a preliminary pass with the specified nodes held to the given voltages. The restrictions
are then released and the iteration continues to the true solution. The .nodeset line may
be necessary for convergence on bistable or astable circuits. .nodeset all=val sets all
starting node voltages (except for the ground node) to the same value. In general, the
.nodeset line should not be necessary.

15.2.2 .IC: Set Initial Conditions

General form:
.ic v(nodnum)=val v(nodnum)=val
Examples:

.ic v(11)=5 v(4)=-5 v(2)=2.2

The .ic line is for setting transient initial conditions. It has two different interpretations,
depending on whether the uic parameter is specified on the .tran control line, or not.
One should not confuse this line with the .nodeset line. The .nodeset line is only to
help DC convergence, and does not affect the final bias solution (except for multi-stable
circuits). The two indicated interpretations of this line are as follows:

1. When the uic parameter is specified on the .tran line, the node voltages specified
on the .ic control line are used to compute the capacitor, diode, BJT, JFET, and
MOSFET initial conditions. This is equivalent to specifying the ic=... parameter
on each device line, but is much more convenient. The ic=... parameter can still

282 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

be specified and takes precedence over the .ic values. Since no dc bias (initial
transient) solution is computed before the transient analysis, one should take care
to specify all dc source voltages on the .ic control line if they are to be used to
compute device initial conditions.

2. When the uic parameter is not specified on the .tran control line, the DC bias
(initial transient) solution is computed before the transient analysis. In this case,
the node voltages specified on the .ic control lines are forced to the desired initial
values during the bias solution. During transient analysis, the constraint on these
node voltages is removed. This is the preferred method since it allows Ngspice to
compute a consistent dc solution.

15.3 Analyses

15.3.1 .AC: Small-Signal AC Analysis

General form:

.ac dec nd fstart fstop
.ac oct no fstart fstop
.ac lin np fstart fstop

Examples:

.ac dec 10 1 10K
.ac dec 10 1K 100MEG
.ac lin 100 1 100HZ

dec stands for decade variation, and nd is the number of points per decade. oct stands
for octave variation, and no is the number of points per octave. lin stands for linear
variation, and np is the number of points. fstart is the starting frequency, and fstop
is the final frequency. If this line is included in the input file, Ngspice performs an AC
analysis of the circuit over the specified frequency range. Note that in order for this
analysis to be meaningful, at least one independent source must have been specified with
an ac value. Typically it does not make much sense to specify more than one ac source.
If you do, the result will be a superposition of all sources and difficult to interpret.

Example:

Basic RC circuit

r 12 1.0

c 2 01.0

vin 1 0 dc¢ 0 ac 1 $ <--- the ac source
.options mnoacct

.ac dec 10 .01 10

.plot ac vdb(2) xlog

.end

15.3. ANALYSES 283

In this AC (or ’small signal’) analysis, all non-linear devices are linearized around their
actual DC operating point. All L and C devices get their imaginary value that depends
on the actual frequency step. Each output vector will be calculated relative to the input
voltage (current) given by the AC value (V},, equals 1 in the example above). The resulting
node voltages (and branch currents) are complex vectors. Therefore one has to be careful
using the plot command, specifically, one may use the variants of vxx(node) described
in Chapt. 15.6.2 like vdb(2) (see also the above example).

If one wants to simulate ac on a large linear array, the option noopac (15.1.3) may be
useful. Linear circuits are containing only linear device instances starting with letters r,
l, ¢, i, v, e, g, f, h, k. The instances e, g, f, h have to be the simple ones, as of chapt.
4.2, not the polynomial nor the behavioral variants. If the option noopac is set, ngspice
tests for the absence of any other devices. If successful, the often lengthy op calculation
is skipped, ac is started immediately. Considerable simulation time savings may result.

15.3.2 .DC: DC Transfer Function

General form:
.dc srcnam vstart vstop vincr [src2 start2 stop2 incr2]

Examples:

.dc VIN 0.25 5.0 0.25

.dc VDS 0 10 .5 VGS 0 5 1
.dc VCE 0 10 .25 IB 0O 10u 1u
.dc RLoad 1k 2k 100

.dc TEMP -15 75 5

The .dc line defines the dc transfer curve source and sweep limits (with capacitors open
and inductors shorted). srcnam is the name of an independent voltage or current source,
a resistor, or the circuit temperature. vstart, vstop, and vincr are the starting, final,
and incrementing values, respectively. The first example causes the value of the voltage
source Viy to be swept from 0.25 Volts to 5.0 Volts with steps of 0.25 Volt. A second
source (src2) may optionally be specified with its own associated sweep parameters. In
such a case the first source is swept over its own range for each value of the second source.
This option is useful for obtaining semiconductor device output characteristics. See the
example on transistor characterization (21.3).

284 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.3.3 .DISTO: Distortion Analysis

General form:

.disto dec nd fstart fstop <f2overfl>
.disto oct no fstart fstop <f2overfl>
.disto 1lin np fstart fstop <f2overfl>

Examples:

.disto dec 10 1kHz 100MEG
.disto dec 10 1kHz 100MEG 0.9

The .disto line does a small-signal distortion analysis of the circuit. A multi-dimensional
Volterra series analysis is done using multi-dimensional Taylor series to represent the
nonlinearities at the operating point. Terms of up to third order are used in the series
expansions.

If the optional parameter £2overf1 is not specified, .disto does a harmonic analysis - i.e.,
it analyses distortion in the circuit using only a single input frequency Fi, which is swept
as specified by arguments of the .disto command exactly as in the .ac command. Inputs
at this frequency may be present at more than one input source, and their magnitudes
and phases are specified by the arguments of the distof1 keyword in the input file lines
for the input sources (see the description for independent sources). (The arguments of
the distof2 keyword are not relevant in this case).

The analysis produces information about the AC values of all node voltages and branch
currents at the harmonic frequencies 2F; and , vs. the input frequency F} as it is swept. (A
value of 1 (as a complex distortion output) signifies cos(27(2F})t) at 2F) and cos(27(3F})t)
at 3F), using the convention that 1 at the input fundamental frequency is equivalent
to cos(2wFit).) The distortion component desired (2F; or 3F}) can be selected using
interactive or control commands in ngspice, and then printed or plotted. (Normally, one
is interested primarily in the magnitude of the harmonic components, so the magnitude
of the AC distortion value is looked at). It should be noted that these are the AC values
of the actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2
and HD3, one must divide by the corresponding AC values at Fj, obtained from an .ac
line. This division can be done again using interactive or control commands.

If the optional f2overf1 parameter is specified, it should be a real number between (and
not equal to) 0.0 and 1.0; in this case, .disto does a spectral analysis. It considers
the circuit with sinusoidal inputs at two different frequencies F} and F,. Fj is swept
according to the .disto control line options exactly as in the .ac control line. Fj is
kept fixed at a single frequency as I} sweeps - the value at which it is kept fixed is
equal to f2overfl times fstart. Each independent source in the circuit may potentially
have two (superimposed) sinusoidal inputs for distortion, at the frequencies F; and Fj.
The magnitude and phase of the F| component are specified by the arguments of the
distofl keyword in the source’s input line (see the description of independent sources);
the magnitude and phase of the F, component are specified by the arguments of the
distof2 keyword. The analysis produces plots of all node voltages/branch currents at
the intermodulation product frequencies Fy + Fy, Fy — Fy, and (2F;) — F3, vs the swept

15.3. ANALYSES 285

frequency Fi. The IM product of interest may be selected using the setplot command,
and displayed with the print and plot commands. It is to be noted as in the harmonic
analysis case, the results are the actual AC voltages and currents at the intermodulation
frequencies, and need to be normalized with respect to .ac values to obtain the IM
parameters.

If the distofl or distof2 keywords are missing from the description of an independent
source, then that source is assumed to have no input at the corresponding frequency. The
default values of the magnitude and phase are 1.0 and 0.0 respectively. The phase should
be specified in degrees.

It should be carefully noted that the number f2overf1 should ideally be an irrational
number, and that since this is not possible in practice, efforts should be made to keep
the denominator in its fractional representation as large as possible, certainly above 3,
for accurate results (i.e., if f2overf1 is represented as a fraction 4/B, where A and B
are integers with no common factors, B should be as large as possible; note that A < B
because f2overf1 is constrained to be < 1). To illustrate why, consider the cases where
f2overfl is 49/100 and 1/2. In a spectral analysis, the outputs produced are at F; + Fb,
Fy — F, and 2F) — F5. In the latter case, Fy — Fy, = F5, so the result at the F| — F;
component is erroneous because there is the strong fundamental F; component at the
same frequency. Also, F1 + F, = 2F; — F; in the latter case, and each result is erroneous
individually. This problem is not there in the case where f2overf1l = 49/100, because
Fy — F, = 51/100 F; <> 49/100 F; = F,. In this case, there are two very closely
spaced frequency components at Fy and F; — F5. One of the advantages of the Volterra
series technique is that it computes distortions at mix frequencies expressed symbolically
(i.e. nFy + mFy), therefore one is able to obtain the strengths of distortion components
accurately even if the separation between them is very small, as opposed to transient
analysis for example. The disadvantage is of course that if two of the mix frequencies
coincide, the results are not merged together and presented (though this could presumably
be done as a postprocessing step). Currently, the interested user should keep track of the
mix frequencies himself or herself and add the distortions at coinciding mix frequencies
together should it be necessary.

Only a subset of the ngspice nonlinear device models supports distortion analysis. These
are

« Diodes (DIO),

. BJT,

« JFET (level 1),

o MOSFETs (levels 1, 2, 3, 9, and BSIM1),

« MESFET (level 1).

286 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.3.4 .INOISE: Noise Analysis

General form:

.noise v(output <,ref>) src (dec | lin | oct) pts fstart fstop
+ <pts_per_summary >

Examples:

.noise v(5) VIN dec 10 1kHz 100MEG
.noise v(5,3) V1 oct 8 1.0 1.0e6 1

The .noise line does a noise analysis of the circuit. output is the node at which the total
output noise is desired; if ref is specified, then the noise voltage v(output) - v(ref) is
calculated. By default, ref is assumed to be ground. src is the name of an independent
source to which input noise is referred. pts, fstart and fstop are .ac type parameters
that specify the frequency range over which plots are desired. pts_per_summary is an
optional integer; if specified, the noise contributions of each noise generator is produced
every pts_per_summary frequency points. The .noise control line produces two plots,
which can selected by setplot command:

« one for the Voltage or Current Noise Spectral Density (in V/v#z or 4/vHz respective
the input is a voltage or current source) curves (e.g. after setplot noisel). There
are two vectors over frequency:

— onoise_spectrum: This is the output noise voltage or current divided by

VHz.

— inoise_spectrum: This the equivalent input noise = output noise divided by
the gain of the circuit.

« one for the Total Integrated Noise (in V' or A) over the specified frequency range
(e.g. after setplot noise2). There are two vectors which are in reality scalars:

— onoise_total: This is the output noise voltage over the specified frequency
range

— inoise_total: This the equivalent input noise over the specified frequency
range = output noise divided by the gain of the circuit.

The units of all result vectors can be changed by using control variable sqrnoise:

« set sqrnoise: will deliver results in squared form, means the unit is V*/m= or
A%/g . This value refers more to the convenient Power Spectral Density.

Default setting of ngspice is unset sqrnoise, which delivers Voltage or Current Noise
Spectral Density. This is more practical from designers point of view.

15.3. ANALYSES 287

15.3.5 .OP: Operating Point Analysis

General form:

.op

Compute the DC operating point of the circuit with inductors shorted and capacitors
opened.

A DC solution can be difficult to find for some circuits, including those with floating nodes
or active devices that are non-conducting. After an attempt at an initial DC solution,
ngspice uses the following convergence aids, in order, to try to obtain a DC solution:

1. gmin stepping (gminsteps option). Inserts small conductances across active devices.

o gminsteps = 0: No gmin

e gminsteps = 1: Step device model gmin, followed by dynamic gmin stepping
(default)

o gminsteps = 2: Original SPICE 3 gmin

2. source stepping (srcsteps option)

o srcsteps = 0: No source stepping
o srcsteps = 1: Gillespie source stepping (default)

o srecsteps = 2: Original SPICE 3 source stepping

DC analysis is complete as soon as one successful step is found.

Note: an operating point analysis is automatically performed prior to a transient analysis
(if the parameter uic is not selected) to determine the transient initial conditions, and
prior to an AC small-signal, Noise, and Pole-Zero analysis to determine the linearized,
small-signal models for nonlinear devices. These data are not stored, except for setting
the KEEPOPINFO variable 15.1.2, that prompts creating an OP plot in addition to the AC,
Noise, or PZ plots.

288 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.3.6 .PZ: Pole-Zero Analysis

General form:

.pz nodel node2 node3 node4 cur pol
.pz nodel node2 node3 node4 cur zer
.pz nodel node2 node3 node4 cur pz
.pz nodel node2 node3 node4 vol pol
.pz nodel node2 NODE3 node4 vol =zer
.pz nodel node2 node3 node4 vol pz

Examples:
.pz 1 0 3 0 cur pol
.pz 2 3 5 0 vol zer
.pz 4 1 4 1 cur pz

cur stands for a transfer function of the type (output voltage)/(input current) while vol
stands for a transfer function of the type (output voltage)/(input voltage). pol stands
for pole analysis only, zer for zero analysis only and pz for both. This feature is provided
mainly because if there is a non-convergence in finding poles or zeros, then, at least the
other can be found. Finally, nodel and node2 are the two input nodes and node3 and
node4 are the two output nodes. Thus, there is complete freedom regarding the output
and input ports and the type of transfer function.

In interactive mode, the command syntax is the same except that the first field is pz
instead of .pz. To print the results, one should use the command print all.

15.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

General form:

.3ENS O0UTVAR

.SENS OUTVAR AC DEC ND FSTART FSTOP
.3ENS OUTVAR AC OCT NO FSTART FSTOP
.SENS OUTVAR AC LIN NP FSTART FSTOP

Examples:

.SENS V(1,0UT)
.SENS V(0UT) AC DEC 10 100 100k
.SENS I(VTEST)

The sensitivity of OUTVAR to all non-zero device parameters is calculated when the
SENS analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source
branch current). The first form calculates sensitivity of the DC operating-point value
of OUTVAR. The second form calculates sensitivity of the AC values of OUTVAR. The

15.3. ANALYSES 289

parameters listed for AC sensitivity are the same as in an AC analysis (see .AC above).
The output values are in dimensions of change in output per unit change of input (as
opposed to percent change in output or per percent change of input).

15.3.8 .TF: Transfer Function Analysis

General form:
.tf outvar insrc
Examples:

.tf v(5, 3) VIN
.tf i(VLOAD) VIN

The .tf line defines the small-signal output and input for the dc small-signal analysis.
outvar is the small signal output variable and insrc is the small-signal input source. If
this line is included, ngspice computes the dc small-signal value of the transfer function
(output/input), input resistance, and output resistance. For the first example, ngspice
would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and
the small signal output resistance measured across nodes 5 and 3.

15.3.9 .TRAN: Transient Analysis

General form:
.tran tstep tstop <tstart <tmax>> <uic>
Examples:

.tran 1ns 100ns
.tran 1ns 1000ns 500ns
.tran 10ns 1lus

tstep is the printing or plotting increment for line-printer output. For use with the
post-processor, tstep is the suggested computing increment. tstop is the final time, and
tstart is the initial time. If tstart is omitted, it is assumed to be zero. The transient
analysis always begins at time zero. In the interval [zero, tstart), the circuit is analyzed
(to reach a steady state), but no outputs are stored. In the interval [tstart, tstop|, the
circuit is analyzed and outputs are stored. tmax is the maximum stepsize that ngspice
uses; for default, the program chooses either tstep or (tstop-tstart)/50.0, whichever is
smaller. tmax is useful when one wishes to guarantee a computing interval that is smaller
than the printer increment, tstep.

An initial transient operating point at time zero is calculated according to the following
procedure: all independent voltages and currents are applied with their time zero values,

290 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

all capacitances are opened, inductances are shorted, the non linear device equations are
solved iteratively.

uic (use initial conditions) is an optional keyword that indicates that the user does not
want ngspice to solve for the quiescent operating point before beginning the transient
analysis. If this keyword is specified, ngspice uses the values specified using IC=... on the
various elements as the initial transient condition and proceeds with the analysis. If the
.ic control line has been specified (see 15.2.2), then the node voltages on the .1ic line are
used to compute the initial conditions for the devices. IC=... will take precedence over
the values given in the .ic control line. If neither IC=... nor the .ic control line is given
for a specific node, node voltage zero is assumed.

Look at the description on the .ic control line (15.2.2) for its interpretation when uic is
not specified.

15.3.10 Transient noise analysis (at low frequency)

In contrast to the analysis types described above, the transient noise simulation (noise
current or voltage versus time) is not implemented as a dot command, but is integrated
with the independent voltage source vsrc (isrc not yet available) (see 4.1.7) and used in
combination with the .tran transient analysis (15.3.9).

Transient noise analysis deals with noise currents or voltages added to your circuits as a
time dependent signal of randomly generated voltage excursion on top of a fixed dc voltage.
The sequence of voltage values has random amplitude, but equidistant time intervals,
selectable by the user (parameter NT). The resulting voltage waveform is differentiable
and thus does not require any modifications of the matrix solving algorithms.

White noise is generated by the ngspice random number generator, applying the Box-
Muller transform. Values are generated on the fly, each time when a breakpoint is hit.

The 1/f noise is generated with an algorithm provided by N. J. Kasdin (‘Discrete sim-
ulation of colored noise and stochastic processes and 1/f* power law noise generation’,
Proceedings of the IEEE, Volume 83, Issue 5, May 1995 Page(s):802-827). The noise
sequence (one for each voltage/current source with 1/f selected) is generated upon start
up of the simulator and stored for later use. The number of points is determined by the
total simulation time divided by NT, rounded up the the nearest power of 2. Each time a
breakpoint (n * NT, relevant to the noise signal) is hit, the next value is retrieved from
the sequence.

If you want a random, but reproducible sequence, you may select a seed value for the
random number generator by adding

setseed nn
to the spinit or .spiceinit file, nn being a positive integer number.

The transient noise analysis will allow the simulation of the three most important noise
sources. Thermal noise is described by the Gaussian white noise. Flicker noise (pink noise
or 1 over f noise) with an exponent between 0 and 2 is provided as well. Shot noise is
dependent on the current flowing through a device and may be simulated by applying a
non-linear source as demonstrated in the following example:

15.3. ANALYSES 291

Example:

* Shot noise test with B source, diode

* voltage on device (diode, forward)

Vdev out O DC 0 PULSE(0.4 0.45 10u)

* diode, forward direction, to be modeled with noise
D1 mess O DMOD

.model DMOD D IS=1e-14 N=1

X1 O mess out ishot

¥ device between 1 and 2

* new output terminals of device including noise: 1 and 3
.subckt ishot 1 2 3

* white noise source with rms 1V

* 20000 sample points

VNG 0 11 DC O TRNOISE(1 1n O 0)

*measure the current i(vil)

Vi 2 3 DC O

¥ calculate the shot noise

* sqrt (2*current*q*xbandwidth)

BI 1 3 I=sqrt(2*abs(i(vl))*1.6e-19%1e7)*v(11)

.ends ishot

.tran 1n 20u
.control

run

plot (-1)x*i(vdev)
.endc

.end

The selection of the delta time step (NT) is worth discussing. Gaussian white noise has un-
limited bandwidth and thus unlimited energy content. This is unrealistic. The bandwidth
of real noise is limited, but it is still called “White’ if it is the same level throughout the
frequency range of interest, e.g. the bandwidth of your system. Thus you may select NT
to be a factor of 10 smaller than the frequency limit of your circuit. A thorough analysis
is still needed to clarify the appropriate factor. The transient method is probably most
suited to circuits including switches, which are not amenable to the small signal .NOISE
analysis (Chapt. 15.3.4).

There is a price you have to pay for transient noise analysis: the number of required time
steps, and thus the simulation time, increases.

In addition to white and 1/f noise the independent voltage and current sources offer
a random telegraph signal (RTS) noise source, also known as burst noise or popcorn
noise, again for transient analysis. For each voltage (current) source offering RTS noise
an individual noise amplitude is required for input, as well as a mean capture time and a
mean emission time. The amplitude resembles the influence of a single trap on the current
or voltage. The capture and emission times emulate the filling and emptying of the trap,
typically following a Poisson process. They are generated from an random exponential
distribution with respective mean values given by the user. To simulate an ensemble of
traps, you may combine several current or voltage sources with different parameters.

292

CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

All three sources (white, 1/f, and RTS) may be combined in a single command line.

RTS noise example:

* white noise, 1/f noise, RTS noise

* voltage source

VRTS2 13 12 DC O trnoise(0 O 0 O 5m 18u 30u)

VRTS3 11 0 DC O trnoise(0 0 O O 10m 20u 40u)

VALL 12 11 DC O trnoise(im 1u 1.0 0.1m 15m 22u 50u)

VWiliof 21 0 DC +trnoise(im 1u 1.0 0.1m)

* current source

IRTS2 10 0 DC O trmnoise(0 O O O 5m 18u 30u)

IRTS3 10 0 DC O trnoise(0 O O O 10m 20u 40u)

IALL 10 O DC O trnoise(im 1u 1.0 O0.1m 15m 22u 50u)
R10 10 0O 1

IWlof 9 0 DC +trnoise(lm 1u 1.0 0.1m)
Rall 9 0 1

* sample points
.tran 1u 500u

.control

run

plot v(13) v(21)
plot v(10) v(9)
.endc

.end

Some details on RTS noise modeling are available in a recent article [20], available here.

This transient noise feature is still experimental.

The following questions (among others) are to be solved:

clarify the theoretical background

noise limit of plain ngspice (numerical solver, fft etc.)
time step (NT) selection

calibration of noise spectral density

how to generate noise from a transistor model

application benefits and limits

http://www.see.ed.ac.uk/~tbt/iscas09.pdf

15.3. ANALYSES 293

15.3.11 .PSS: Periodic Steady State Analysis

Ezxperimental code, not yet made publicly available.

General form:
.pss gfreq tstab oscnob psspoints harms sciter steadycoeff <uic>
Examples:

.pss 150 200e-3 2 1024 11 50 5e-3 uic
.pss 624e6 1u v_plus 1024 10 150 5e-3 uic
.pss 624e6 500n bout 1024 10 100 5e-3 uic

gfreq is guessed frequency of fundamental suggested by user. When performing transient
analysis the PSS algorithm tries to infer a new rough guess rgfreq on the fundamental.
If gfreq is out of £10% with respect to rgfreq then gfreq is discarded.

tstab is stabilization time before the shooting begin to search for the PSS. It has to be
noticed that this parameter heavily influence the possibility to reach the PSS. Thus is a
good practice to ensure a circuit to have a right tstab, e.g. performing a separate TRAN
analysis before to run PSS analysis.

oscnob is the node or branch where the oscillation dynamic is expected. PSS analysis
will give a brief report of harmonic content at this node or branch.

psspoints is number of step in evaluating predicted period after convergence is reached.
It is useful only in Time Domain plots. However this number should be higher than 2
times the requested harms. Otherwise the PSS analysis will properly adjust it.

harms number of harmonics to be calculated as requested by the user.
sciter number of allowed shooting cycle iterations. Default is 50.

steady_coeff is the weighting coefficient for calculating the Global Convergence Error
(GCE), which is the reference value in order to infer is convergence is reached. The lower
steady_coeff is set, the higher the accuracy of predicted frequency can be reached but
at longer analysis time and sciter number. Default is le-3.

uic (use initial conditions) is an optional keyword that indicates that the user does not
want ngspice to solve for the quiescent operating point before beginning the transient
analysis. If this keyword is specified, ngspice uses the values specified using IC=... on
the various elements as the initial transient condition and proceeds with the analysis. If
the .ic control line has been specified, then the node voltages on the .ic line are used to
compute the initial conditions for the devices. Look at the description on the .ic control
line for its interpretation when uic is not specified.

294 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.4 Measurements after AC, DC and Transient Anal-
ysis

15.4.1 .meas(ure)

The .meas or .measure statement (and its equivalent meas command, see Chapt.
17.5.43) are used to analyze the output data of a tran, ac, or dc simulation. The command
is executed immediately after the simulation has finished.

15.4.2 batch versus interactive mode

.meas analysis may not be used in batch mode (-b command line option), if an output
file (rawfile) is given at the same time (-r rawfile command line option). In this batch
mode ngspice will write its simulation output data directly to the output file. The data
is not kept in memory, thus is no longer available for further analysis. This is done to
allow a very large output stream with only a relatively small memory usage. For .meas
to be active you need to run the batch mode with a .plot or .print command. A better
alternative may be to start ngspice in interactive mode.

If you need batch like operation, you may add a .controlendc section to the
input file:

Example:

*input file
.tran 1ns 1000ns

% 5k 5k % ok ok %k ok ok %k 5k >k 3k 5k K % 5k %k K 5k K K >k K K >k K >k >k Kk k ¥
.control

run

write outputfile data

.endc
sk ok %k sk ok sk sk %k sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k %k %k X

.end
and start ngspice in interactive mode, e.g. by running the command
ngspice inputfile .

.meas<ure> then prints its user-defined data analysis to the standard output. The anal-
ysis includes propagation, delay, rise time, fall time, peak-to-peak voltage, minimum or
maximum voltage, the integral or derivative over a specified period and several other user
defined values.

15.4.3 General remarks

The measure type {DC|AC|TRAN|SP} depends on the data that is to be evaluated, either
originating from a dc analysis, an ac analysis, or a transient simulation. The type SP to

15.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 295

analyze a spectrum from the spec or £ft commands is only available when executed in a
meas command, see 17.5.43.

result will be a vector containing the result of the measurement. trig variable,
targ_variable, and out_variable are vectors stemming from the simulation, e.g. a
voltage vector v(out).

VAL=val expects a real number val. It may be as well a parameter delimited by " or {}
expanding to a real number.

TD=td and AT=time expect a time value if measure type is tran. For ac and sp, AT
will be a frequency value, TD is ignored. For dc analysis, AT is a voltage (or current), TD
is ignored as well.

CROSS=+# requires an integer number #. CROSS=LAST is possible as well. The same is
expected by RISE and FALL.

Frequency and time values may start at 0 and extend to positive real numbers. Voltage
(or current) inputs for the independent (scale) axis in a dc analysis may start or end at
arbitrary real valued numbers.

Please note that not all of the .measure commands have been implemented.

15.4.4 Input

In the following lines you will get some explanation on the .measure commands. A
simple simulation file with two sines of different frequencies may serve as an example.
The transient simulation delivers time as the independent variable and two voltages as
output (dependent variables).

Input file:

File: simple-meas-tran.sp

* Simple .measure examples

* transient simulation of two sine

* signals with different frequencies

vacl 1 0 DC 0 sin(0 1 1k O 0)

vac2 2 0 DC 0 sin(0 1.2 0.9k 0 0)

.tran 10u b5m

*

.measure tran ... $ for the different inputs see
below!

*

.control

run

plot v(1) v(2)

.endc

.end

After displaying the general syntax of the .measure statement, some examples are posted,
referring to the input file given above.

296 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.4.5 Trig Targ

.measure according to general form 1 measures the difference in dc voltage, frequency or
time between two points selected from one or two output vectors. The current examples
all are using transient simulation. Measurements for tran analysis start after a delay
time td. If you run other examples with ac simulation or spectrum analysis, time may
be replaced by frequency, after a dc simulation the independent variable may become a
voltage or current.

General form 1:

.MEASURE {DC|AC|TRAN|SP} result TRIG trig_variable
VAL=val

<TD=td> <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST>
<FALL=# | FALL=LAST> <TRIG AT=time> TARG
targ_variable

VAL=val <TD=td> <CROSS=# | CROSS=LAST> <RISE=# |
RISE=LAST> <FALL=# | FALL=LAST> <TARG AT=time>

+ +

+ +

Measure statement example (for use in the input file given above):
.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 RISE=2

measures the time difference between v(1) reaching 0.5 V for the first time on its first
rising slope (TRIG) versus reaching 0.5 V again on its second rising slope (TARG), i.e.
it measures the signal period.

Output:

tdiff = 1.000000e-003 targ= 1.083343e-003 trig= 8.334295e-005
Measure statement example:

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 RISE=3

measures the time difference between v(1) reaching 0.5 V for the first time on its rising
slope versus reaching 0.5 V on its rising slope for the third time (i.e. two periods).

Measure statement:
.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 FALL=1

measures the time difference between v(1) reaching 0.5V for the first time on its rising
slope versus reaching 0.5 V on its first falling slope.

Measure statement:
.measure tran tdiff TRIG v(1) VAL=0 FALL=3 TARG v(2) VAL=0 FALL=3

measures the time difference between v(1) reaching 0V its third falling slope versus v(2)
reaching 0 V on its third falling slope.

Measure statement:
.measure tran tdiff TRIG v(1) VAL=-0.6 CR0OSS=1 TARG v(2) VAL=-0.8 CR0SS=1

measures the time difference between v(1) crossing -0.6 V for the first time (any slope)
versus v(2) crossing -0.8 V for the first time (any slope).

15.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 297

Measure statement:
.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CROSS=3

measures the time difference between the time point 1ms versus the time when v(2) crosses
-0.8 V for the third time (any slope).

15.4.6 Find ... When

The FIND and WHEN functions allow measuring any dependent or independent time, fre-
quency, or dc parameter, when two signals cross each other or a signal crosses a given
value. Measurements start after a delay TD and may be restricted to a range between
FROM and TO.

General form 2:

.MEASURE {DC|AC|TRAN|SP} result WHEN out variable=val
+ <TD=td> <FROM=val> <TO=val> <CROSS=# | CROSS=LAST>
+ <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>

Measure statement:
.measure tran teval WHEN v(2)=0.7 CROSS=LAST
measures the time point when v(2) crosses 0.7 V for the last time (any slope).

General form 3:

.MEASURE {DC|AC|TRAN|SP} result
+ WHEN out_variable=out_variable?2
+ <TD=td> <FROM=val> <T0O=val> <CR0OSS=# | CROSS=LAST>
+ <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>
Measure statement:
.measure tran teval WHEN v(2)=v(1) RISE=LAST

measures the time point when v(2) and v(1) are equal, v(2) rising for the last time.

General form 4:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable

+ WHEN out_variable2=val <TD=td> <FROM=val> <TO=val>
+ <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST>

+ <FALL=# | FALL=LAST>

Measure statement:
.measure tran yeval FIND v(2) WHEN v(1)=-0.4 FALL=LAST

returns the dependent (y) variable drawn from v(2) at the time point when v(1) equals a
value of -0.4, v(1) falling for the last time.

298 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form 5:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable
+ WHEN out_variable2=out_variable3d <TD=td>
+ <CROSS=# | CROSS=LAST>
+ <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>
Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=v(3) FALL=2

returns the dependent (y) variable drawn from v(2) at the time point when v(1) crosses
v(3), v(1) falling for the second time.

General form 6:

.MEASURE {DC|AC|TRAN|SP} result FIND out_variable AT=
val
Measure statement:
.measure tran yeval FIND v(2) AT=2m

returns the dependent (y) variable drawn from v(2) at the time point 2 ms (given by
AT=time).

15.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT

General form 7:

.MEASURE {DC|AC|TRAN|SP} result
+ {AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT}
+ out_variable <TD=td> <FROM=val> <TO=val>
Measure statements:
.measure tran ymax MAX v(2) from=2m to=3m
returns the maximum value of v(2) inside the time interval between 2 ms and 3 ms.
.measure tran tymax MAX_AT v(2) from=2m to=3m

returns the time point of the maximum value of v(2) inside the time interval between 2
ms and 3 ms.

.measure tran ypp PP v(1) from=2m to=4m
returns the peak to peak value of v(1) inside the time interval between 2 ms and 4 ms.
.measure tran yrms RMS v(1) from=2m to=4m

returns the root mean square value of v(1) inside the time interval between 2 ms and 4
ms.

.measure tran yavg AVG v(1) from=2m to=4m

returns the average value of v(1) inside the time interval between 2 ms and 4 ms.

15.4. MEASUREMENTS AFTER AC, DC AND TRANSIENT ANALYSIS 299

15.4.8 Integ

General form 8:

.MEASURE {DC|AC|TRAN|SP} result INTEG<RAL>
out _variable
+ <TD=td> <FROM=val> <TO=val>
Measure statement:

.measure tran yint INTEG v(2) from=2m to=3m

returns the area under v(2) inside the time interval between 2 ms and 3 ms.

15.4.9 param

General form 9:

.MEASURE {DC|AC|TRAN|SP} result param=’expression’

Measure statement:

.param fval=b

.measure tran yadd param=’fval + 7’

will evaluate the given expression fval + 7 and return the value 12.

"Ezpression’ is evaluated according to the rules given in Chapt. 2.9.5 during start up
of ngspice. It may contain parameters defined with the .param statement. It may also
contain parameters resulting from preceding .meas statements.

.param vout_diff=50u

.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CR0SS=3
.meas tran bw_chk param=’(tdiff < vout_diff) ? 1 : 0O’

will evaluate the given ternary function and return the value 1 in bw_chk, if tdiff mea-
sured is smaller than parameter vout_diff.

The expression may not contain vectors like v(10), e.g. anything resulting directly from
a simulation. This may be handled with the following .meas command option.

15.4.10 par(’expression’)

The par (‘ezpression’) option (15.6.6) allows the use of algebraic expressions on the
.measure lines. Every out_variable may be replaced by par(’ezpression’) using the gen-
eral forms 1...9 described above. Internally par(’expression’) is substituted by a vector
according to the rules of the B source (Chapt. 5.1). A typical example of the general
form is shown below:

300 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

General form 10:

.MEASURE {DC|TRAN|AC|SP} result
+ FIND par(’expression’) AT=val

The measure statement
.measure tran vtest find par(’ (v(2)*v(1))’) AT=2.3m
returns the product of the two voltages at time point 2.3 ms.

Note that a B-source, and therefore the par(’...”) feature, operates on values of type
complex in AC analysis mode.

15.4.11 Deriv

General form:

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE>
out _variable
+ AT=val

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE>
out_variable

+ WHEN out _variable2=val <TD=td>

+ <CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST>

+ <FALL=#|FALL=LAST>

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE>
out_variable

+ WHEN out_variable2=out_variable3

+ <TD=td> <CROSS=# | CROSS=LAST>

+ <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>

15.4.12 More examples

Some other examples, also showing the use of parameters, are given below. Corresponding
demonstration input files are distributed with ngspice in folder /examples/measure.

15.5. SAFE OPERATING AREA (SOA) WARNING MESSAGES 301

Other examples:

.meas tran inv_delay2 trig v(in) val=’vp/2’ td=1n

fall=1

+ targ v(out) val=’vp/2’ rise=1

.meas tran test_datal trig AT = 1n targ v(out)

+ val="vp/2’ rise=3

.meas tran out_slew trig v(out) val=’0.2%vp’ rise=2

+ targ v(out) val=’0.8*vp’ rise=2

.meas tran delay_chk param=’(inv_delay < 100ps) 7 1
O)

.meas tran skew when v(out)=0.6

.meas tran skew2 when v(out)=skew _meas

.meas tran skew3 when v(out)=skew_meas fall=2
.meas tran skew4 when v(out)=skew_meas fall=LAST
.meas tran skewb FIND v(out) AT=2n

.meas tran vO0 _min min i(v0)

+ from=’dfall’ to=’dfall+period’
.meas tran vO_avg avg i(vO0)

+ from=’dfall’ to=’dfall+period’
.meas tran vO_integ integ i(vO0)

+ from=’dfall’ to=’dfall+period’
.meas tran vO_rms rms i(vO0)

+ from=’dfall’ to=’dfall+period’

.meas dc is_at FIND i(vs) AT=1

.meas dc is_max max i(vs) from=0 to=3.5

.meas dc vds_at when i(vs)=0.01

.meas ac vout_at FIND v(out) AT=1MEG

.meas ac vout_atd FIND vdb(out) AT=1MEG

.meas ac vout _max max v(out) from=1k to=10MEG

.meas ac freq_at when v(out)=0.1

.meas ac vout_diff trig v(out) val=0.1 rise=1 targ v(

out)
+ val=0.1 fall=1
.meas ac fixed_diff trig AT = 10k targ v(out)
+ val=0.1 rise=1
.meas ac vout_avg avg v(out) from=10k to=1MEG

.meas ac vout_integ integ v(out) from=20k to=500k
.meas ac freq_at2 when v(out)=0.1 fall=LAST
.meas ac bw_chk param=’(vout_diff < 100k) 7 1 : 0O’
.meas ac vout_rms rms v(out) from=10 to=1G

15.5 Safe Operating Area (SOA) warning messages

By setting .option warn=1, the Safe Operation Area check algorithm is enabled. In this
case for .op, .dc and .tran analysis warning messages are issued if the branch voltages
of devices (Resistors, Capacitors, Diodes, BJTs and MOSFETS) exceed limits that are

302

specified by model parameters. All these parameters are positive with default value of

CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

infinity.

The check is executed after Newton-Raphson iteration is finished i.e. in transient analysis
in each time step. The user can specify an additional .option maxwarns (default: 5) to

limit the count of messages.

The output goes on default to stdout or alternatively to a file specified by command line

option --soa-log=filename.

15.

1

5.1 Resistor and Capacitor SOA model parameters

. Bv_max:

if |Vr| or |Vc| exceed Bv_max, SOA warning is issued.

15.5.2 Diode SOA model parameter

1

. Bv_max:

2. Fv_max:

if |Vj| exceeds Bv_max, SOA warning is issued.

if |V{| exceeds Fv_max, SOA warning is issued.

15.5.3 BJT SOA model parameter

1

2

3

4

. Vbe_max:

. Vbc_max:

. Vce_max:

. Vcs_max:

if [Vbe| exceeds Vbe_max, SOA warning is issued.
if [Vbe| exceeds Vbc_max, SOA warning is issued.
if |[Vce| exceeds Vce_max, SOA warning is issued.

if |Ves| exceeds Ves_max, SOA warning is issued.

15.5.4 MOS SOA model parameter

1

. Vgs_max:
. Vgd_max:
. Vgb_max:
. Vds_max:
. Vbs_max:

. Vbd_max:

if |Vgs| exceeds Vgs_max, SOA warning is issued.
if |Vgd| exceeds Vgd_max, SOA warning is issued.
if |Vgb| exceeds Vgb_max, SOA warning is issued.
if |Vds| exceeds Vds_max, SOA warning is issued.
if |Vbs| exceeds Vbs_max, SOA warning is issued.

if |Vbd| exceeds Vbd_max, SOA warning is issued.

15.6. BATCH OUTPUT 303

15.6 Batch Output

The following commands .print (15.6.2), .plot (15.6.3) and .four (15.6.4) are valid
only if ngspice is started in batch mode (see 16.4.1), whereas .save and the equivalent
.probe are aknowledged in all operating modes.

If you start ngspice in batch mode using the -b command line option, the outputs of
.print, .plot, and .four are printed to the console output. You may use the output
redirection of your shell to direct this printout into a file (not available with MS Windows
GUI). As an alternative, you may extend the ngspice command by specifying an output
file:

ngspice -b -o output.log input.cir

If you however add the command line option -r to create a rawfile, .print and .plot
are ignored. If you want to involve the graphics plot output of ngspice, use the control
mode (16.4.3) instead of the -b batch mode option.

15.6.1 .SAVE: Name vector(s) to be saved in raw file

General form:
.save vector vector vector
Examples:

.save i(vin) nodel v(node?2)
.save Om1[id] vsource#branch
.save all @m2[vdsat]

The vectors listed on the .SAVE line are recorded in the rawfile for use later with ngspice.
The standard vector names are accepted. Node voltages may be saved by giving the
nodename or v(nodename). Currents through an independent voltage source are given by
i (sourcename) or sourcename#branch. Internal device data are accepted as @dev [param].

If no . SAVE line is given, then the default set of vectors is saved (node voltages and voltage
source branch currents). If .SAVE lines are given, only those vectors specified are saved.
For more discussion on internal device data, e.g. @m1[id], see Appendix, Chapt. 31.1. If
you want to save internal data in addition to the default vector set, add the parameter
all to the additional vectors to be saved. If the command .save vm(out) is given, and
you store the data in a rawfile, only the original data v(out) are stored. The request for
storing the magnitude is ignored, because this may be added later during rawfile data
evaluation with ngspice. See also the section on the interactive command interpreter
(Chapt. 17.5) for information on how to use the rawfile.

304 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.6.2 .PRINT Lines

General form:
.print prtype ovl <ov2 ... ov8>
Examples:

.print tran v(4) i(vin)
.print dc v(2) i(vsrc) v(23, 17)
.print ac vm(4, 2) vr(7) vp(8, 3)

The .print line defines the contents of a tabular listing of one to eight output variables.
prtype is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified
outputs are desired. The form for voltage or current output variables is the same as given
in the previous section for the print command; Spice2 restricts the output variable to
the following forms (though this restriction is not enforced by ngspice):

V(N1<,N2>) | specifies the voltage difference between nodes N1 and
N2. If N2 (and the preceding comma) is omitted,
ground (0) is assumed. See the print command in the
previous section for more details. For compatibility
with SPICE2, the following five additional values can
be accessed for the ac analysis by replacing the ‘V’ in
V(N1,N2) with:

VR Real part
VI Imaginary part
VM Magnitude
VP Phase
VDB | 20logl0(magnitude)

I (VXXXXXXX) | specifies the current flowing in the independent voltage
source named VXXXXXXX. Positive current flows
from the positive node, through the source, to the
negative node. (Not yet implemented: For the ac
analysis, the corresponding replacements for the letter
I may be made in the same way as described for
voltage outputs.)

Output variables for the noise and distortion analyses have a different general form from
that of the other analyses. There is no limit on the number of .print lines for each type
of analysis. The par ("expression’) option (15.6.6) allows the use of algebraic expressions
in the .print lines. .width (15.6.7) selects the maximum number of characters per line.

15.6.3 .PLOT Lines

.plot creates a printer plot output.

15.6. BATCH OUTPUT 305

General form:
.plot pltype ovl <(plol, phil)> <ov2 <(plo2, phi2)> ... ov8>
Examples:

.plot dc v(4) v(5) v(1)

.plot tran v(17, 5) (2, 5) i(vin) v(17) (1, 9)
.plot ac vm(5) vm(31, 24) vdb(5) vp(5)

.plot disto hd2 hd3(R) sim2

.plot tran v(5, 3) v(4) (0, 5) v(7) (0, 10)

The .plot line defines the contents of one plot of from one to eight output variables.
pltype is the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified
outputs are desired. The syntax for the ov< is identical to that for the .print line and
for the plot command in the interactive mode.

The overlap of two or more traces on any plot is indicated by the letter ‘X’ When more
than one output variable appears on the same plot, the first variable specified is printed
as well as plotted. If a printout of all variables is desired, then a companion .print line
should be included. There is no limit on the number of .plot lines specified for each type
of analysis. The par (‘expression’) option (15.6.6) allows the use of algebraic expressions
in the .plot lines.

15.6.4 .FOUR: Fourier Analysis of Transient Analysis Output

General form:
.four freq ovl <ov2 ov3 ...>
Examples:

.four 100K v (5)

The .four (or Fourier) line controls whether ngspice performs a Fourier analysis as a
part of the transient analysis. freq is the fundamental frequency, and ov1 is the desired
vector to be analyzed. The Fourier analysis is performed over the interval <TSTOP-period,
TSTOP>, where TSTOP is the final time specified for the transient analysis, and period is
one period of the fundamental frequency. The dc component and the first nine harmonics
are determined. For maximum accuracy, TMAX (see the .tran line) should be set to
period/100.0 (or less for very high-Q circuits). The par (‘expression’) option (15.6.6)
allows the use of algebraic expressions in the .four lines.

306 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

15.6.5 .PROBE: Name vector(s) to be saved in raw file

General form:
.probe vector <vector vector ...>
Examples:

.probe i(vin) input output
.probe @m1[id]

Same as .SAVE (see 15.6.1).

15.6.6 par(’expression’): Algebraic expressions for output

General form:

par (’expression’)
output=par (’expression’) $ not in .measure ac

Examples:

.four 1001 sql=par(’v(1)*v (1))

.measure tran vtest find par(’(v(2)*xv(1))’) AT=2.3m
.print tran output=par(’v(1)/v(2)’) v(1) v(2)

.plot dc v(1) diff=par(’(v(4)-v(2))/0.01’) out222

With the output lines .four, .plot, .print, .save and in .measure evaluation, it
is possible to add algebraic expressions for output, in addition to vectors. All of these
output lines accept par(’ezpression’), where expression is any expression valid for a B
source (see Chapt. 5.1). Thus expression may contain predefined functions, numerical val-
ues, constants, simulator output like v(nl) or i(vdb), parameters predefined by a .param
statement, and the variables hertz, temper, and time. Note that a B-source, and there-
fore the par(’...?) feature, operates on values of type complex in AC analysis mode.

Internally the expression is replaced by a generated voltage node that is the output of a B
source, one node, and the B source implementing par(’..’). Several par(’../) are allowed
in each line, up to 99 per input file. The internal nodes are named pa_00 to pa_99. An
error will occur if the input file contains any of these reserved node names.

In .four, .plot, .print, .save, but not in .measure, an alternative syntax
output=par (‘expression’) is possible. par (’expression’) may be used as described above.
output is the name of the new node to replace the expression. So output has to be unique
and a valid node name.

The syntax of output=par (expression) is strict: no spaces are allowed between par and
(’or between (and ’. Also,(’ and ’) both are required. There is not much error
checking on your input, so if there is a typo, for example, an error may pop up at an
unexpected place.

15.7. MEASURING CURRENT THROUGH DEVICE TERMINALS 307

15.6.7 .width

Set the width of a print-out or plot with the following card:
.with out = 256

Parameter out yields the maximum number of characters plotted in a row, if printing in
columns or an ASCII-plot is selected.

15.7 Measuring current through device terminals

15.7.1 Adding a voltage source in series

The ngspice matrix solver determines node voltages and currents through independent
voltage sources. So to measure the currents through a resistor, you may add a voltage
source in series with dc voltage 0.

Current measurement with series voltage source

*measure current through R1
vi 1 0 1

R1 1 0 5

R2 1 0 10

* will become

vi 101

R1 1 11 5

Vmess 11 0 dc O

R2 1 0 10

15.7.2 Using option ’savecurrents’

Current measurement with series voltage source

*measure current through R1 and R2
vi 101

R1 1 0 5

R2 1 0 10

.options savecurrents

The option savecurrents will add .save lines (15.6.1) like
.save Ori[i]

.save 0r2[i]

to your input file information read during circuit parsing. These newly created vectors
contain the terminal currents of the devices R1 and R2.

You will find information of the nomenclature in Chapt. 31, also how to plot these vectors.
The following devices are supported: M, J, Q, D, R, C, L, B, F, G, W, S, T (see 2.1.3). For

308 CHAPTER 15. ANALYSES AND OUTPUT CONTROL (BATCH MODE)

M only MOSFET models MOS1 to MOS9 are included so far. Devices in subcircuits are
supported as well. Be careful when choosing this option in larger circuits, because 1 to 4
additional output vectors are created per device and this may consume lots of memory.

Chapter 16

Starting ngspice

16.1 Introduction

Ngspice consists of the simulator and a front-end for data analysis and plotting. Input to
the simulator is a netlist file, including commands for circuit analysis and output control.
Interactive ngspice can plot data from a simulation on a PC or a workstation display.

Ngspice on Linux (and OSs like Cygwin, BCD, Solaris ...) uses the X Window System for
plotting (see Chapt. 18.3) if the environment variable DISPLAY is available. Otherwise,
a console mode (non-graphical) interface is used. If you are using X on a workstation,
the DISPLAY variable should already be set; if you want to display graphics on a system
different from the one you are running ngspice or ngutmeg on, DISPLAY should be of the
form machine:0.0. See the appropriate documentation on the X Window System for more
details.

The MS Windows GUI version of ngspice has a native graphics interface (see Chapt.
18.1).

The front-end may be run as a separate ‘stand-alone’ program under the name ngnutmeg.
ngnutmeg is a subset of ngspice dedicated to data evaluation, still optionally compilable
(Linux, Mingw) for historical reasons. Ngnutmeg will read in the ‘raw’ data output file
created by ngspice -r or by the write command during an interactive ngspice session.

16.2 Where to obtain ngspice

The actual distribution of ngspice may be downloaded from the ngspice download web
page. The installation for Linux or MS Windows is described in the file INSTALL to be
found in the top level directory. You may also have a look at Chapt. 32 of this manual
for compiling instructions.

If you want to check out the source code that is actually under development, you may
have a look at the ngspice source code repository, which is stored using the Git Source
Code Management (SCM) tool. The Git repository may be browsed on the Git web
page, also useful for downloading individual files. You may however download (or clone)
the complete repository including all source code trees from the console window (Linux,
CYGWIN or MSYS/MINGW) by issuing the command (in a single line)

309

http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/scm/?type=git&group_id=38962
http://sourceforge.net/scm/?type=git&group_id=38962

310 CHAPTER 16. STARTING NGSPICE
git clone git://git.code.sf.net/p/ngspice/ngspice

You need to have Git installed, which is available for all three OSs. The whole source
tree is then available in <current directory>/ngspice. Compilation and local installation
is again described in INSTALL (or Chapt. 32). If you later want to update your files
and download the recent changes from SourceForge into your local repository, cd into the
ngspice directory and just type

git pull

git pull will not overwrite modified files in your working directory. To drop your local
changes first, you can run

git reset --hard

To learn more about git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation, which has pointers
to documentation and tutorials.

16.3 Command line options for starting ngspice

Command Synopsis:
ngspice [-o logfile]l [-r rawfile] [-b] [-i] [input files]
The oudated, optional ngnutmeg may be called by
Command Synopsis:
ngnutmeg [-] [datafile ...]
Where data file is the standard ngspice rawfile.

Options are shown below.

http://git-scm.com/
http://git-scm.com/documentation

16.3. COMMAND LINE OPTIONS FOR STARTING NGSPICE

311

\ Option \

Long option

‘ Meaning

|

Don’t try to load the default data file ("rawspice.raw")
if no other files are given (ngnutmeg only).

-n

--no-spiceinit

Don’t try to source the file .spiceinit upon start-up.
Normally ngspice and ngnutmeg try to find the file in
the current directory, and if it is not found then in the
user’s home directory (obsolete).

TERM

—--terminal=TERM

The program is being run on a terminal with mfb
name term (obsolete).

--batch

Run in batch mode. Ngspice reads the default input
source (e.g. keyboard) or reads the given input file and
performs the analyses specified; output is either
Spice2-like line-printer plots ("ascii plots") or a ngspice
rawfile. See the following section for details. Note that
if the input source is not a terminal (e.g. using the 10
redirection notation of "<") ngspice defaults to batch
mode (-i overrides). This option is valid for ngspice
only.

——s8server

Run in server mode. This is like batch mode, except
that a temporary rawfile is used and then written to
the standard output, preceded by a line with a single
'"@Q", after the simulation is done. This mode is used by
the ngspice daemon. This option is valid for ngspice
only.

Example for using pipes from the console window:

cat adder.cir|ngspice -s|more

—-—interactive

Run in interactive mode. This is useful if the standard
input is not a terminal but interactive mode is desired.
Command completion is not available unless the
standard input is a terminal, however. This option is
valid for ngspice only.

FILE

—-rawfile=FILE

Use rawfile as the default file into which the results of
the simulation are saved. This option is valid for
ngspice only.

P

~~pipe

Allow a program (e.g., xcircuit) to act as a GUI
frontend for ngspice through a pipe. Thus ngspice will
assume that the input pipe is a tty and allow running
in interactive mode.

FILE

--output=FILE

All logs generated during a batch run (-b) will be saved
in outfile.

--help

A short help statement of the command line syntax.

--version

Prints a version information.

—-—autorun

Start simulation immediately, as if a control section
.control

run

.endc

had been added to the input file.

--soa-log=FILE

output from Safe Operating Area (SOA) check

312 CHAPTER 16. STARTING NGSPICE

Further arguments to ngspice are taken to be ngspice input files, which are read and
saved (if running in batch mode then they are run immediately). Ngspice accepts Spice3
(and also most Spice2) input files, and outputs ASCII plots, Fourier analyses, and node
printouts as specified in .plot, .four, and .print cards. If an out parameter is given on
a .width card (15.6.7), the effect is the same as set width = Since ngspice ASCII plots
do not use multiple ranges, however, if vectors together on a .plot card have different
ranges they do not provide as much information as they do in a scalable graphics plot.

For ngnutmeg, further arguments are taken to be data files in binary or ASCII raw file
format (generated with -r in batch mode or the write (see 17.5.96) command) that are
loaded into ngnutmeg. If the file is in binary format, it may be only partially completed
(useful for examining output before the simulation is finished). One file may contain any
number of data sets from different analyses.

16.4 Starting options

16.4.1 Batch mode

Let’s take as an example the Four-Bit binary adder MOS circuit shown in Chapt. 21.6,
stored in a file adder-mos.cir. You may start the simulation immediately by calling

ngspice -b -r adder.raw -o adder.log adder-mos.cir

ngspice will start, simulate according to the .tran command and store the output data
in a rawfile adder.raw. Comments, warnings and info messages go to log file adder.log.
Commands for batch mode operation are described in Chapt. 15.

16.4.2 Interactive mode

If you call
ngspice

ngspice will start, load spinit (16.5) and .spiceinit (16.6, if available), and then waits for
your manual input. Any of the commands described in 17.5 may be chosen, but many of
them are useful only after a circuit has been loaded by

ngspice 1 -> source adder-mos.cir
others require the simulation to be done already (e.g. plot):

ngspice 2 ->run
ngspice 3 ->plot allv

If you call ngspice from the command line with a circuit file as parameter:
ngspice adder—-mos.cir

ngspice will start, load the circuit file, parse the circuit (same circuit file as above, con-
taining only dot commands (see Chapt. 15) for analysis and output control). ngspice then
just waits for your input. You may start the simulation by issuing the run command.
Following completion of the simulation you may analyze the data by any of the commands
given in Chapt. 17.5.

16.4. STARTING OPTIONS 313

16.4.3 Control mode (Interactive mode with control file or con-
trol section)

If you add the following control section to your input file adder-mos.cir, you may call
ngspice adder-mos.cir
from the command line and see ngspice starting, simulating and then plotting immediately.

Control section:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control

unset askquit

save vcc#branch

run

plot vcc#branch

rusage all

.endc

Any suitable command listed in Chapt. 17.5 may be added to the control section, as well
as control structures described in Chapt. 17.6. Batch-like behavior may be obtained by
changing the control section to

Control section with batch-like behavior:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control

unset askquit

save vcc#branch

run

write adder.raw vcc#branch

quit

.endc

If you put this control section into a file, say adder-start.sp, you may just add the line
.include adder-start.sp

to your input file adder-mos.cir to obtain the batch-like behavior. In the following example
the line .tran ... from the input file is overridden by the tran command given in the
control section.

Control section overriding the .tran command:

* ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.control

unset askquit

save vcc#branch

tran 1n 500n

plot vcc#branch

rusage all

.endc

314 CHAPTER 16. STARTING NGSPICE

The commands within the .control section are executed in the order they are listed and
only after the circuit has been read in and parsed. If you want to have a command being
executed before circuit parsing, you may use the prefix pre_ (17.5.50) to the command.

A warning is due however: If your circuit file contains such a control section (.control ...
.endc), you should not start ngspice in batch mode (with -b as parameter). The outcome
may be unpredictable!

16.5 Standard configuration file spinit

At startup ngspice reads its configuration file spinit. spinit may be found in a path relative
to the location of the ngspice executable

..\share\ngspice\scripts. The path may be overridden by setting the environmental vari-
able SPICE__SCRIPTS to a path where spinit is located. Ngspice for Windows will addi-
tionally search for spinit in the directory where ngspice.exe resides. If spinit is not found
a warning message is issued, but ngspice continues.

Standard spinit contents:

* Standard ngspice init file

alias exit quit

alias acct rusage all

** set the number of threads in openmp

** default (if compiled with --enable-openmp) is: 2
set num threads=4

if $7?sharedmode
unset interactive
unset moremode
else
set interactive
set xlllineararcs
end

strcmp __flag $program "ngspice"
if $§__flag = 0

codemodel ../lib/spice/spice2poly.cm

codemodel ../lib/spice/analog.cm

codemodel ../lib/spice/digital.cm
codemodel ../lib/spice/xtradev.cm
codemodel ../lib/spice/xtraevt.cm

codemodel ../lib/spice/table.cm

end
unset __flag

spinit contains a script, made of commands from Chapt. 17.5, that is run upon start up
of ngspice. Aliases (name equivalences) can be set. The asterisk ‘*’ comments out a line.

16.6. USER DEFINED CONFIGURATION FILE .SPICEINIT 315

If used by ngspice, spinit will then load the XSPICE code models from a path relative to
the current directory where the ngspice executable resides. You may also define absolute
paths.

If the standard path for the libraries (see standard spinit above or /usr/local/lib/spice
under CYGWIN and Linux) is not adequate, you can add the . /configure options --prefix=/usr
—-libdir=/usr/1ib64 to set the codemodel search path to /usr/1ib64/spice. Besides

the standard 1ib only 1ib64 is acknowledged.

Special care has to be taken when using the ngspice shared library. If you use ngspice.dll
under Windows OS, the standard is to use relative paths for the code models as shown
above. However, the path is relative to the calling program, not to the dll. This is fine
when ngspice.dll and the calling program reside in the same directory. If ngspice.dll is
placed in a different directory, please check Chapt. 32.2.

The Linux shared library ... t.b.d.

16.6 User defined configuration file .spiceinit

In addition to spinit you may define a (personal) file .spiceinit and put it into the current
directory or in your home directory. The typical search sequence for .spiceinit is: cur-
rent directory, HOME (Linux) and then USERPROFILE (Windows). USERPROFILE
is typically C:\Users\<User name>. This file will be read in and executed after spinit,
but before any other input file is read. It may contain further scripts, set variables, or
issue commands from Chapt.17.5 to override commands given in spinit. For example set
filetype=ascii will yield ASCII output in the output data file (rawfile), instead of the
compact binary format that is used by default. set ngdebug will yield a lot of additional
debug output. Any other contents of the script, e.g. plotting preferences, may be included
here also. If the command line option -n is used upon ngspice start up, this file will be
ignored.

.spiceinit may contain:

* User defined ngspice init file
set filetype=ascii

*set ngdebug

set numthreads 8

*set outputpath=C:\Spice64\out
set ngbehavior = psa

16.7 Environmental variables

16.7.1 Ngspice specific variables

SPICE_LIB_DIR default: /usr/local/share/ngspice (Linux, CYGWIN), C:\Spice\share\ngspice
(Windows)

SPICE_EXEC_DIR default: /usr/local/bin (Linux, CYGWIN), C:\Spice\bin (Windows)

316 CHAPTER 16. STARTING NGSPICE

SPICE_BUGADDR default: http://ngspice.sourceforge.net/bugrep.html
Where to send bug reports on ngspice.

SPICE_EDITOR default: vi (Linux, CYGWIN), notepad.exe (MINGW, Visual Studio)
Set the editor called in the edit command. Always overrides the EDITOR env.
variable.

SPICE_ASCIIRAWFILE default: 0
Format of the rawfile. 0 for binary, and 1 for ascii.

SPICE_NEWS default: $SPICE_LIB_DIR/news
A file that is copied verbatim to stdout when ngspice starts in interactive mode.

SPICE_HELP_DIR default: $SPICE_LIB_DIR/helpdir
Help directory, not used in Windows mode

SPICE_HOST default: empty string
Used in the rspice command (probably obsolete, to be documented)

SPICE_SCRIPTS default: $SPICE_LIB_DIR/scripts
In this directory the spinit file will be searched.

SPICE_PATH default: $SPICE_EXEC_DIR/ngspice
Used in the aspice command (probably obsolete, to be documented)

NGSPICE_MEAS_PRECISION default: 5
Sets the number of digits if output values are printed by the meas(ure) command.

SPICE_NO_DATASEG_CHECK default: undefined
If defined, will suppress memory resource info (probably obsolete, not used on Win-
dows or where the /proc information system is available.)

NGSPICE_INPUT_DIR default: undefined
If defined, using a valid directory name, will add the given directory to the search
path when looking for input files (*.cir, *.inc, *.lib).

16.7.2 Common environment variables

TERM LINES COLS DISPLAY HOME PATH EDITOR SHELL POSIXLY_CORRECT

16.8 Memory usage

Ngspice started with batch option (-b) and rawfile output (-r rawfile) will store all sim-
ulation data immediately into the rawfile without keeping them in memory. Thus very
large circuits may be simulated, the memory requested upon ngspice start up will depend
on the circuit size, but will not increase during simulation.

If you start ngspice in interactive mode or interactively with control section, all data will
be kept in memory, to be available for later evaluation. A large circuit may outgrow even
Gigabytes of memory. The same may happen after a very long simulation run with many

16.9. SIMULATION TIME 317

vectors and many time steps to be stored. Issuing the save <nodes> command will help
to reduce memory requirements by saving only the data defined by the command. You
may also choose option INTERP (15.1.4) to reduce memory usage.

16.9 Simulation time

Simulating large circuits may take an considerable amount of CPU time. If this is of
importance, you should compile ngspice with the flags for optimum speed, set during
configuring ngspice compilation. Under Linux, MINGW, and CYGWIN you should select
the following option to disable the debug mode, which slows down ngspice:

./configure --disable-debug
Adding --disable-debug will set the -O2 optimization flag for compiling and linking.

Under MS Visual Studio, you will have to select the release version, which includes
optimization for speed.

If you have selected XSPICE (see Chapt. 12 and II) as part of your compilation con-
figuration (by adding the option --enable-xspice to your ./configure command), the
value of trtol (see 15.1.4) is set internally to 1 (instead of default 7) for higher precision
if XSPICE code model A’ devices included in the circuit. This may double or even triple
the CPU time needed for any transient simulation, because the amount of time steps and
thus iteration steps is more than doubled. For MS Visual Studio compilation there is
currently no simple way to exclude XSPICE during compilation.

You may enforce higher speed during XSPICE usage by setting the variable xtrtol in your
.spiceinit initialization file or in the . control section in front of the tran command (via set
xtrtol=2 using the set command 17.5.65) and override the above trtol reduction. Beware
however of precision or convergence issues if you use XSPICE ’A’ devices, especially if
xtrtol is set to values larger than 2.

If your circuit is composed mostly of MOS transistors, and you have a multi-core processor
at hand, you may benefit from OpenMP parallel processing, as described next (16.10).

16.10 Ngspice on multi-core processors using OpenMP

16.10.1 Introduction

Today’s computers typically come with CPUs having more than one core. It will thus be
useful to enhance ngspice to make use of such multi-core processors.

Using circuits containing mostly transistors and e.g. the BSIM3 model, around 2/3 of the
CPU time is spent in evaluating the model equations (e.g. in the BSIM3Load() function).
The same happens with other advanced transistor models. Thus, such functions should be
parallelized, if possible. Solving the matrix takes about 10% to 50% of the CPU time, so
parallel processing in the matrix solver is sometimes of secondary interest only! Further,
such paralellization is difficult to achieve with our Sparse Matrix and KLU solvers.

Another alternative is using CUSPICE, that is ngspice (current version 27) designed for
running massively parallel on NVIDIA GPUs. CUDA enhancements to C code are applied.

https://developer.nvidia.com/cuda-toolkit

318 CHAPTER 16. STARTING NGSPICE

For LINUX, please see the user guide. For MS Windows, an executable is available at the
ngspice download pages.

16.10.2 Internals

A publication [1] has described a way to exactly do that using OpenMP, which is available
on many platforms and is easy to use, especially if you want to perform parallel processing
of a for-loop.

To explain the implemented approach BSIM3 version 3.3.0 model was chosen, located in
the BSIM3 directory, as the first example. The BSIM3load() function in b3ld.c contains
two nested for-loops using linked lists (models and instances, e.g. individual transistors).
Unfortunately OpenMP requires a loop with an integer index. So in file B3set.c an
array is defined, filled with pointers to all instances of BSIM3 and stored in model-
>BSIM3InstanceArray.

BSIM3load() is now a wrapper function, calling the for-loop, which runs through functions
BSIM3LoadOMP(), once per instance. Inside BSIM3LoadOMP() the model equations are
calculated.

Typically it is necessary to use synchronization constructs such as mutexes when multiple
threads write to a common memory location. To avoid the performance degradation of
such synchronization, temporary per-thread memory locations are used within the for loop
of the BSIM3LoadOMP() function as defined in bsim3def.h. After all threads complete
the for-loop, the update to the matrix is done in an extra function BSIM3LoadRhsMat/()
in the main thread.

Then the thread programming needed is only a single line!!
#pragma omp parallel for
introducing the for-loop over the device instances.

This of course is made possible only thanks to the OpenMP guys and the clever trick on
no synchronization introduced by the above cited authors.

The time-measuring function getrusage () used with Linux or Cygwin to determine the
CPU time usage (with the rusage option enabled) counts tics from every core, adds them
up, and thus reports a CPU time value enlarged by a factor of 8 if 8 threads have been
chosen. So now ngspice is forced to use ftime for time measuring if OpenMP is selected.

16.10.3 Some results

Some results on an inverter chain with 627 CMOS inverters, BSIM4.7, 45 nm, running for
200ns, compiled with Visual Studio Community 2019 on Windows 10 (full optimization)
or gce 7.4, SUSE Linux Leap 15.1, -O2, on a i9 9900K machine with 8 real cores (16
logical processors using hyperthreading) and 32 GB of memory are shown in table 16.1.

So we see a ngspice speed up of more than a factor of two! Even on an Windows 7
notebook with a dual core i7 processor, more than 1.5x improvement using two threads
was attained. This is consistent with the fact that roughly half of the CPU time is used
for evaluating the device model, half of the time for solving the matrix. Only the device

http://ngspice.sourceforge.net/cuspice/CUSPICE_User_Guide.pdf
http://ngspice.sourceforge.net/download.html#exp1

16.10. NGSPICE ON MULTI-CORE PROCESSORS USING OPENMP 319

Table 16.1: OpenMP performance

Threads | CPU time [s] | CPU time [s]

Windows Linux
1 65.4 69.3
2 46.7 47 .4
4 37.2 36.9
6 33.6 33.6
8 32.4 32.4
12 35.7 31.7
16 38.2 34.3

evaluation is parallelized by OpenMP. The time for doing this becomes negligible with
8 or more threads. Allowing more than 8 threads (using the 8 physical cores) does not
yield much improvement, even leads to a slight increase of simulation time, because the
code is not optimized for hyperthreading.

16.10.4 Usage

To state it clearly: OpenMP is installed inside the model equations of a particular model.
It is available in BSIM3 versions 3.3.0 and 3.2.4, but not in any other BSIM3 model,
in BSIM4 versions 4.5, 4.6.5, 4.7 or 4.8, but not in any other BSIM4 model, and in
B4SOlI, version 4.4, not in any other SOI model. Older parameter files of version 4.6.x
(x any number up to 5) are accepted, you have to check for compatibility.

Under Linux you may run
./autogen.sh
./configure ... --enable-openmp

make install

The same has been tested under MS Windows with CYGWIN and MINGW as well

and delivers similar results.

Under M'S Windows with Visual Studio Professional the preprocessor flag USE_0OMP,
and the /openmp flag in Visual Studio are enabled by default. Visual Studio 2015 and
later offer OpenMP support inherently.

The number of threads has to be set manually by placing
set num_ threads=4

into spinit or .spiceinit or in the control section of the SPICE input file. If OpenMP is
enabled, but num__threads not set, a default value num_threads=2 is set internally.

If you simulate a circuit, please keep in mind to select BSIM3 (levels 8, 49) version 3.2.4 or
3.3.0 (11.2.10), by placing this version number into your parameter files, BSIM4 (levels 14,
54) version 4.5, 4.6.5, 4.7 or 4.8 (11.2.11), or B4SOI (levels 10, 58) version 4.4 (11.2.14).
All other transistor models run as usual (without multithreading support).

If you run ./configure without --enable-openmp (or without USE_OMP preprocessor flag
under MS Windows), you will get only the standard, not paralleled BSIM3 and BSIM4

320 CHAPTER 16. STARTING NGSPICE

models, as has been available from Berkeley. If OpenMP is selected and the number
of threads set to 1, there will be only a very slight CPU time disadvantage (typ. 3%)
compared to the old, non OpenMP build.

16.10.5 Literature

[1] R.K. Perng, T.-H. Weng, and K.-C. Li: "On Performance Enhancement of Circuit
Simulation Using Multithreaded Techniques", IEEE International Conference on Compu-
tational Science and Engineering, 2009, pp. 158-165

16.11 Server mode option -s

A program may write the SPICE input to the console. This output is redirected to ngspice
via ‘| ngspice called with the -s option writes its output to the console, which again is
redirected to a receiving program by ‘|’ In the following simple example cat reads the
input file and prints it content to the console, which is redirected to ngspice by a first
pipe, ngspice transfers its output (similar to a raw file, see below) to less via another
pipe.

Example command line:

cat input.cir|ngspice -sl|less

Under MS Windows you will need to compile ngspice as a console application (see Chapt.
32.2.4) for this server mode usage.

Example input file:

test -s

vi 1 01

rl1 1 0 2k

.options filetype=ascii
.save i(v1)

.dc v1 -1 1 0.5

.end

If you start ngspice console with
ngspice -s

you may type in the above circuit line by line (not to forget the first line, which is a title
and will be ignored). If you close your input with ctrl Z, and return, you will get the
following output (this is valid for MINGW only) on the console, like a raw file:

Circuit: test -s

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

16.12. PIPE MODE OPTION -P 321

Title: test -s

Date: Sun Jan 15 18:57:13 2012

Plotname: DC transfer characteristic

Flags: real

No. Variables: 2

No. Points: O

Variables:

No. of Data Columns : 2

0 v(v-sweep) voltage

1 i(vl) current

Values:

0 -1.000000000000000e+000
5.000000000000000e-004

1 -5.000000000000000e-001
2.500000000000000e-004

2 0.000000000000000e+000
0.000000000000000e+000

3 5.000000000000000e-001
-2.500000000000000e-004

4 1.000000000000000e+000
-5.000000000000000e-004

©0@ 122 5

The number 5 of the last line @@ 122 5 shows the number of data points, which is
missing in the above line No. Points: 0 because at the time of writing to the console
it has not yet been available.

ctrl Z is not usable here in Linux, a patch to install ctrl D instead is being evaluated.

16.12 Pipe mode option -p

A program may write a set of ngspice commands (see 17.5) to the console. This output is
redirected to ngspice via ‘|’ ngspice called with the -p option immediately executes the
commands and then exits. In the following simple example cat reads the input file and
prints it content to the console, which is redirected to ngspice by a pipe, ngspice executes
the commands.

Example command line:
cat pipe-circuit.cir | ngspice -p

Under MS Windows you will need to compile ngspice as a console application (see Chapt.
32.2.4) for this pipe mode usage.

322 CHAPTER 16. STARTING NGSPICE

Example input file:

*pipe-circuit.cir

source circuit.cir
tran 10u 2m

write pcir.raw all

Example circuit file:

* Circuit.cir

Vi n0 O SIN(O 10 1kHz)
Cl n1 n0O 3.3nF

R1 0 n1 1k

.end

The raw file pcir.raw will contain the final simulation results.

16.13. NGSPICE CONTROL VIA INPUT, OUTPUT FIFOS

16.13 Ngspice control via input, output fifos

Example bash script:

#!/usr/bin/env bash
NGSPICE_COMMAND="ngspice"

rm input.fifo
rm output.fifo

mkfifo input.fifo
mkfifo output.fifo

$NGSPICE_COMMAND -p -i <input.fifo

exec 3>input.fifo

echo "I can write to input.fifo"

echo "Start processing..."
echo nn

echo "source circuit.cir" >&3
echo "unset askquit" >&3

echo "set nobreak" >&3

echo "tran 0.01ms 0.1ms">&3
echo "print nO0" >&3

echo "quit" >&3

echo "Try to open output.fifo
exec 4<output.fifo

echo "I can read from output.fifo"

echo "Ready to read..."
while read output
do
echo $output
done <&4

exec 3>&-
exec 4>&-

echo "End processing"

>output.fifo &

The bash script listed above (tested under Linux and Cygwin)

- launches ngspice in pipe mode (-p) in another thread.

- writes some commands to the ngspice input

323

324 CHAPTER 16. STARTING NGSPICE

- runs ngspice with the tran command
- reads the output and prints it onto the console.
The input file with a small circuit is:

Circuit.cir:

* Circuit.cir

Vi n0O O SIN(O 10 1kHz)
Cl n1 n0O 3.3nF

R1 0 n1 1k

.end

16.14 Compatibility

ngspice is a direct derivative of spice3fb from UC Berkeley and thus inherits all of the
commands available in its predecessor. Thanks to the open source policy of UCB (orig-
inal spice3 from 1994 is still available here), several commercial variants have sprung
off, either being more dedicated to IC design or more concentrating on simulating dis-
crete and board level electronics. None of the commercial and almost none of the freely
downloadable SPICE providers publishes the source code. All of them have proceeded
with the development, by adding functionality, or by adding a more dedicated user inter-
face. Some have kept the original SPICE syntax for their netlist description, others have
quickly changed some if not many of the commands, functions and procedures. Thus it
is difficult, if not impossible, to offer a simulator that acknowledges all of these netlist
dialects. ngspice includes some features that enhance compatibility that are included au-
tomatically. This selection may be controlled to some extend by setting the compatibility
mode. Others may be invoked by the user by small additions to the netlist input file.
Some of them are listed in this chapter, some will be integrated into ngspice at a later
stage, others will be added if they are reported by users.

16.14.1 Compatibility mode

The variable (17.7) ngbehavior sets the compatibility mode. Per default no compatibility
mode is selected. The compatibility status will be displayed in the output window.

set ngbehavior=ltpsa
in spinit or .spiceinit is atypical command, setting PSPICE and LTSPICE compatibility
for the whole netlist. Flag ’a’ may be combined with any of the flags listed below. By
contrast

set ngbehavior=ps
(without ’a’) will set PSPICE compatibility only for libraries which are added by a .in-

clude command. So you may keep your Spice3 compatible netlist, but including PSPICE
device models. The available compatibility flags are:

http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm

16.14. COMPATIBILITY 325

\ Flag \ Ref. \ Short description \
a complete netlist transformed
ps 16.14.5 PSPICE compatibility
hs | 16.14.10 HSPICE compatibility

spe | 16.14.9 Spectre compatibility
It 16.14.6 LTSPICE compatibility
s3 Spice3 compatibility
11 all (currently not used)
ki 16.14.8 KiCad compatibility
eg EAGLE compatibility
mc for 'make check’

Table 16.2: Compatibility flags

’s3? will disable some of the advanced ngspice features. ’eg’ will enable EAGLE com-
patible voltage vector output.’mc’ is required when the command ’make check’ is to
be executed. Then all flags are reset, in addition the compatibility status output is sup-
pressed. Flags ’ps’ and ’hs’ are mutually exclusive.

The command ’unset ngbehavior’ will remove the variable ngbehavior, thus resetting
the compatibility mode to the default (no compat mode is set).

16.14.2 Missing functions

You may add one or more function definitions to your input file, as listed below.

.func LIMIT(x,a,b) {min(max(x, a), b)}
.func PWR(x,a) {abs(x) *x a}

.func PWRS(x,a) {sgn(x) * PWR(x,a)}
.func stp(x) {u(x)}

16.14.3 Devices
16.14.3.1 E Source with LAPLACE

see 5.2.5.

16.14.3.2 VSwitch

The VSwitch

S1 23 11 0 SW
.MODEL SW VSWITCH(VON=5V VOFF=0V RON=0.1 ROFF=100K)

may become

326 CHAPTER 16. STARTING NGSPICE

al %v(11) %gd(2 3) sw
.MODEL SW aswitch(cntl off=0.0 cntl on=5.0 r off=1e5
+ r_on=0.1 log=TRUE)

The XSPICE option has to be enabled.

16.14.4 Controls and commands

16.14.4.1 .lib

The ngspice .lib command (see 2.8) requires two parameters, a file name followed by a
library name. If no library name is given, the line

.1ib filename

should be replaced by

.inc filename

Alternatively, the compatibility mode (16.14.1) may be set to ’ps’.

16.14.4.2 .step

Repeated analysis in ngspice if offered by a short script inside of a .control section (see
Chapt. 17.8.8) added to the input file. A simple application (multiple dc sweeps) is shown
below.

16.14. COMPATIBILITY 327

Input file with parameter sweep

parameter sweep
* resistive divider, R1 swept from start_r to stop_r
* replaces .STEP R1 1k 10k 1k

R1 1 2 1k
R2 2 0 1k

VDD 1 0 DC 1
.dc VDD 0 1 .1

.control
let start_r = 1k
let stop_r = 10k
let delta_r = 1k
let r_act = start_r
* loop
while r_act le stop_r
alter rl r act
run
write dc-sweep.out v(2)
set appendwrite
let r act = r_act + delta r
end
plot dcl.v(2) dc2.v(2) dc3.v(2) dc4.v(2) dcb5.v(2)
+ dc6.v(2) dc7.v(2) dc8.v(2) dc9.v(2) dcl10.v(2)
.endc

.end

16.14.5 PSPICE Compatibility mode

If the variable (17.7) ngbehavior is set to *ps’ or ’psa’ with the commands
set ngbehavior=ps

or
set ngbehavior=psa

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist
by the .include command (ps) or the complete netlist (psa) from PSPICE syntax to
ngspice. This feature allows reading of PSPICE (or TINA) compatible device libraries
(ps) that are often supplied by the semiconductor device manufacturers. Or you may
choose to use complete PSPICE simulation decks (psa). Some ngspice input files may

328 CHAPTER 16. STARTING NGSPICE

fail, however. For example ngspice\examples\memristor\memristor.sp will not do, because
it uses the parameter vt, and vt is a reserved word in PSPICE.

PSPICE to ngspice translation details:

 .model replacement in ako (a kind of) model descriptions

» replace the E source TABLE function by a B source pwl

e add predefined params TEMP, VT, GMIN to beginning of deck

o add predefined params TEMP, VT to beginning of each .subckt call
e add .functions limit, pwr, pwrs, stp, if, int

o replace
S1 D S DG GND SWN
.MODEL SWN VSWITCH(VON=0.55 VOFF=0.49
+ RON={1/(2*M* (W/LE) * (KPN/2)*10) } ROFF=1G)
by
asl %vd(DG GND) % gd(D S) aswn
.model aswn aswitch(cntl off=0.49 cntl _on=0.55
+ r_off=1G r_on={1/(2*Mx* (W/LE)*(KPN/2)*10)} log=TRUE)

o replace & by &&
 replace | by ||
o replace T_ABS by temp and T_REL_GLOBAL by dtemp

o get the area factor for diodes and bipolar devices
dl nl n2 dmod 7 —> dl1 nl n2 dmod area=7
g2 nl n2 n3 [n4] bjtmod 1.35 > g2 nl n2 n3 n4 bjtmod area=1.35
g3 12 3 4 bjtmod 1.45->92 1 2 3 4 bjtmod area=1.45

o Check for double {{ }}’, replace the inner {’, ’}" by ’(’, ')’

 Limit for exp function (linear growth when exponent is larger than 14).

In ps or psa mode, ngspice will treat all .lib entries like .include. There is no hierarchically
library handling. So for reading HSPICE compatible libraries, you definitely have to unset
the ps mode, e.g. by not adding set ngbehavior=ps or disabling it by

unset ngbehavior=ps
16.14.6 LTSPICE Compatibility mode
If the variable (17.7) ngbehavior is set to >1t’ or ’1ta’ with the commands

set ngbehavior=1t

16.14. COMPATIBILITY 329

or
set ngbehavior=1lta

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice
netlist by the .include command (It) or the complete netlist (Ita) from LTSPICE syn-
tax to ngspice. This feature allows reading of LTSPICE compatible device libraries or
complete netlists.

Currently we offer only a subset of the documented or undocumented functions (uplim,
dnlim, uplim_ tanh, dnlim_ tanh). More user input is definitely required here!

This compatibility mode also adds a simple diode using the sidiode code model (12.2.30).
The diode model

dl a k dsi
.model dsl d(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=15)

is translated automatically to the equivalent code model diode

adl a k adsi
.model adsl sidiode(Roff=1000 Ron=0.7 Rrev=0.2 Vfwd=1
+ Vrev=10 Revepsilon=0.2 Epsilon=0.2 Ilimit=7 Revilimit=15)

More details:

o In addition to resistor value tokens like 2.2k, ngspice will also recognize 2k2. Same
with capacitors, 4.7u or 4u7 are equivalent.

16.14.7 LTSPICE/PSPICE Compatibility mode

If the variable (17.7) ngbehavior is set to >1tps’ or ’ltpsa’ with the commands
set ngbehavior=1tps

or
set ngbehavior=ltpsa

in spinit or .spiceinit, ngspice will translate all files that have been read into ngspice netlist
by the .include command (Itps) or the complete netlist (Itpsa) 16.14.6, 16.14.5 from LT-
SPICE and PSPICE syntax to ngspice. This feature allows reading of LTSPICE and
PSPICE compatible device libraries or complete netlists.

330 CHAPTER 16. STARTING NGSPICE

16.14.8 KiCad Compatibility mode

KiCad will generate vector names containing ’/’. If the variable (17.7) ngbehavior is set
to ki with the command

set ngbehavior=ki

is set in .spiceinit (or plot line flag kicad is given 17.5.49), ngspice will place " around
this vector name. The mathematical operation ’division’ in the plot command will then
work only if spaces are placed around the division operator /.

16.14.9 Spectre Compatibility mode

If the variable (17.7) ngbehavior is set to spe with the command
set ngbehavior=spe

is set in .spiceinit Spectre compatibility mode is enabled. True compatibility today is
still far away. The only action available for now is the use of the MOS device instance
parameter nf. If nf is given and larger than 1 and Spectre (or HSPICE) compatibility
is enabled, nf is used as a divisor to the transistor width W given on the instance line.
The resulting W/nf is now used to select the suitable device model in the binning process.
This procedure is of interest for a multi-gate transistor, which has a total width of W, but
each finger is model according to the model given for W/nf.

16.14.10 HSPICE Compatibility mode

If the variable (17.7) ngbehavior is set to hs with the command
set ngbehavior=hs

is set in .spiceinit HSPICE compatibility mode is enabled. This mode allows to read
libraries with the .1ib command in a recursive fashion, as is required by HSPICE com-
patible process development kits (PDKs) In addition the nf flag is enabled, as described
in 16.14.9 .

16.15 Tests

The ngspice distribution is accompanied by a suite of test input and output files, located
in the directory ngspice/tests. Originally this suite was meant to see if ngspice with all
models was made and installed properly. It is started by

$ make check

from within your compilation and development shell. A sequence of simulations is thus
started, its outputs compared to given output files by comparisons string by string. This

16.16. TOOLS FOR DEBUGGING A CIRCUIT NETLIST 331

feature is momentarily used only to check for the BSIM3 model (11.2.10) and the XSPICE
extension (12). Several other input files located in directory ngspice/tests may serve as
light-weight examples for invoking devices and simple circuits.

Today’s very complex device models (BSIM4 (see 11.2.11), HiSIM (see 11.2.16) and others)
require a different strategy for verification. Under development for ngspice is the CMC
Regression test by Colin McAndrew, which accompanies every new model. These tests
cover a large range of different DC, AC and noise simulations with different geometry
ranges and operating conditions and are more meaningful the transient simulations with
their step size dependencies. A major advantage is the scalability of the diff comparisons,
which check for equality within a given tolerance. A set of Perl modules cares for input,
output and comparisons of the models. Currently BSIM3, BSIM4, BSIMSOI4, HiSIM,
and HiSIM_HV models implement the new test. You may invoke it by running the
command given above or by

$ make -i check 2>&1 | tee results

-i will cause make to ignore any errors, and tee will provide console output as well as
printing to file 'results’. Be aware that under MS Windows you will need the console
binary (see 32.2.4) to run the CMC tests, and you have to have Perl installed!

Other tests have been developed, there are also some benchmark circuit compilations
available. Please have a look at our Tests and Quality Assurance web page.

16.16 Tools for debugging a circuit netlist

This a chapter only in its initial state. Not all circuits will simulate immediately and
easily. The netlist may contain a bug. The netlist may be o.k., but then ngspice may not
find an operating point. If the operating point has been found, the transient simulation
will just yield the famous error message ’transient time step too small’. Unfortumately
there are many reasons for failure, on the other hand there is a lot of literature available
to traet non-convergence.

So for now there will be listed here only a few 'tools’ offered by ngspice to aid debugging.

16.16.1 options and initial conditions

If ngspice has trouble finding the operating point, setting some initial conditions by adding
.nodeset (15.2.1) or .ic (15.2.2) for critical nodes may help. The variation of some op
option parameters may help as well (see 15.1.2). If there are nodes without dc connection
to ground (e.g. two capacitors in series connection), finding the operating point will fail.
Here the option RSHUNT may be of help by adding are (typically large) resistor from
each node to ground. Convergence may be improved by the RSERIES option that add a
(typically small) resistor in series to each inductor.

Transient simulations are governed by another set of options (see 15.1.4). Careful variation
of the parameters, as described in the literature, may enable convergence in incritical
situations (not guaranteed, however).

http://ngspice.sourceforge.net/applic.html#test

332 CHAPTER 16. STARTING NGSPICE

16.16.2 set debug

If set in .spiceinit (or spice.rc), the command set debug will yield an analysis of each
command which is run from .spiceinit and .control.

16.16.3 set ngdebug

The command set ngdebug, if set in .spiceinit (spice.rc) provides some additional warn-
ing messages. If ngspice has write access to the current directory, 3 or 4 files are saved to
that directory, showing the netlist at specific stages during parsing. Each file contain two
parts, the netlist without comment lines, followed by the same netlist including all com-
ment lines. debug-out.txt is available after pre-processing the netlist. debug-out2.txt
shows the netlist after parameter and subcircuit expansion. debug-out3.txt lists the
final netlist. debug-out-mc.txt is issued, when the netlist is reloaded after a reset or
mc_source command.

During a transient simulation a vector ’speedcheck’ is generated in the current tran plot.
The independent variable is the scale vector 'time’, the dependent variable is the wall clock
time with a resolution of about 100 ms. So you may monitor the simulation progress of a
(lengthy) transient simulation and detect critical (simulated) times where the simulation
may be slowed down.

16.16.4 miscellaneous

Debugging the equations of a B source are described in chapt. 5.4.

Compiling ngspice with the ./configure flag —~—enable-ftedebug or (for MS Visual Studio:
adding a preprocessor flag FTEDEBUG) will enable some additional warning messages.

Compiling ngspice with the ./configure flag -—enable-stepdebug or (for MS Visual Stu-
dio: adding a preprocessor flag STEPDEBUG) yields a very powerful tool for analysing the
steps of a transient simulation. The amount of messages printed however is overwhelming
and may be interpreted by an insider only.

16.17 Reporting bugs and errors

Ngspice is a complex piece of software. The source code contains over 1500 files. Various
models and simulation procedures are provided, some of them not used and tested inten-
sively. Therefore errors may be found, some still evolving from the original spice3f5 code,
others introduced during the ongoing code enhancements.

If you happen to experience an error during the usage of ngspice, please send a report to
the development team. Ngspice is hosted on SourceForge, the preferred place to post a
bug report is the ngspice bug tracker. We would prefer to have your bug tested against the
actual source code available at Git, but of course a report using the most recent ngspice
release is welcome! Please provide the following information with your report:

Ngspice version

http://sourceforge.net/tracker/?group_id=38962&atid=423915

16.17. REPORTING BUGS AND ERRORS 333

Operating system
Small input file to reproduce the bug

Actual output versus the expected output

334 CHAPTER 16. STARTING NGSPICE

Chapter 17

Interactive Interpreter

17.1 Introduction

The simulation flow in ngspice (input, simulation, output) may be controlled by dot
commands (see Chapt. 15 and 16.4.1) in batch mode. There is, however, a much more
powerful control scheme available in ngspice, traditionally coined ‘Interactive Interpreter’,
but being much more than just that. In fact there are several ways to use this feature,
truly interactively by typing commands to the input, but also running command sequences
as scripts or as part of your input deck in a quasi batch mode.

You may type in expressions, functions (17.2) or commands (17.5) into the input console
to elaborate on data already achieved from the interactive simulation session.

Sequences of commands, functions and control structures (17.6) may be assembled as a
script (17.8) into a file, and then activated by just typing the file name into the console
input of an interactive ngspice session.

Finally, and most useful, is to add a script to the input file, in addition the the netlist and
dot commands. This is achieved by enclosing the script into .controlendc (see
16.4.3, and 17.8.8 for an example). This feature enables a wealth of control options. You
may set internal (17.7) and other variables, start a simulation, evaluate the simulation
output, start a new simulation based on these data, and finally make use of many options
for outputting the data (graphically or into output files).

Historical note: The final releases of Berkeley Spice introduced a command shell and
scripting possibilities. The former releases were not interactive. The choice for the script-
ing language was an early version of ‘csh’, the C-shell, which was en vogue back then as an
improvement over the ubiquitous Bourne Shell. Berkeley Spice incorporated a modified
csh source code that, instead of invoking the unix ‘exec’ system call, executed internal
SPICE C subroutines. Apart from bug fixes, this is still how ngspice works.

The csh-like scripting language is active in .control sections. It works on ‘strings’, and
does string substitution of ‘environment’ variables. You see the csh at work in ngspice
with set foo = "bar"; set baz = "bar$foo", and in if, repeat, for, ... constructs.
However, ngspice processes mainly numerical data, and support for this was not avail-
able in the c-sh implementation. Therefore, Berkeley implemented an additional type of
variables, with different syntax, to access double and complex double vectors (possibly of
length 1). This new variable type is modified with let, and can be used without special

335

336 CHAPTER 17. INTERACTIVE INTERPRETER

syntax in places where a numerical expression is expected: let bar = 4 * 5; let zoo
= bar * 4 works. Unfortunately, occasionally one has to cross the boundary between the
numeric and the string domain. For this purpose the $& construct is available — it queries
a variable in the numerical let domain, and expands it to a c-sh string denoting the value.
This lets you do do something like set another = "this is $&bar". It is important
to remember that set can only operate on (c-sh) strings, and that let operates only on
numeric data. Convert from numeric to string with $&, and from string to numeric with

$.

17.2 Expressions, Functions, and Constants

Ngspice stores data in the form of vectors: time, voltage, etc. Each vector has a type,
and vectors can be operated on and combined algebraically in ways consistent with their
types. Vectors are normally created as the output of a simulation, or when a data file
(output raw file) is read in again (ngspice using the the load command 17.5.41), or when
the initial data-file is loaded directly into ngnutmeg. They can also be created with the
let command (17.5.38).

An expression is an algebraic formula involving vectors and scalars (a scalar is a vector
of length 1) and the following operations:

+_*/A%9

% is the modulo operator, and the comma operator has two meanings: if it is present
in the argument list of a user definable function, it serves to separate the arguments.
Otherwise, the term x , y is synonymous with x + j(y). Also available are the logical
operations & (and), | (or), ! (not), and the relational operations <, >, >= <=, =,
and <> (not equal). If used in an algebraic expression they work like they would in C,
producing values of 0 or 1. The relational operators have the following synonyms:

\ Operator \ Synonym \

gt >
It <
ge >=
le <=
ne <>
and &
or |
not !
eq =

The operators are useful when < and > might be confused with the internal 10 redirection
(see 17.4, which is almost always happening). It is however safe to use < and > with the
define command (17.5.16).

The following functions are available:

17.2. EXPRESSIONS, FUNCTIONS, AND CONSTANTS

Name \ Function
mag(vector) Magnitude of vector (same as abs(vector)).
ph(vector) Phase of vector.
cph(vector) Phase of vector. Continuous values, no discontinuity at
Em.
unwrap(vector) Phase of vector. Continuous values, no discontinuity at
+7. Real phase vector in degrees as input.
j(vector) i(sqrt(-1)) times vector.
real(vector The real component of vector.
imag(vector) The imaginary part of vector.
conj(vector) The complex conjugate of a vector
db(vector) 20 log10(mag(vector)).
log10(vector) The logarithm (base 10) of vector.
In(vector) The natural logarithm (base e) of vector.
exp(vector) e to the vector power.
abs(vector) The absolute value of vector (same as mag).
sqrt(vector) The square root of vector.
sin(vector) The sine of vector.
cos(vector) The cosine of vector.
tan(vector) The tangent of vector.
atan(vector) The inverse tangent of vector.
sinh(vector) The hyperbolic sine of vector.
cosh(vector) The hyperbolic cosine of vector.
tanh(vector) The hyperbolic tangent of vector.
floor(vector) Largest integer that is less than or equal to vector.
ceil(vector) Smallest integer that is greater than or equal to vector.
norm(vector) The vector normalized to 1 (i.e, the largest magnitude
of any component is 1).
mean(vector) The result is a scalar (a length 1 vector) that is the
mean of the elements of vector (elements values added,
divided by number of elements).
avg(vector) The average of a vector.
Returns a vector where each element is the mean of the
preceding elements of the input vector (including the
actual element).
stddev(vector) The result is a scalar (a length 1 vector) that is the

standard deviation of the elements of vector .

group__delay(vector)

Calculates the group delay —dphase[rad]/dw[rad/s].
Input is the complex vector of a system transfer
function versus frequency, resembling damping and
phase per frequency value. Output is a vector of group
delay values (real values of delay times) versus
frequency.

vector(number) The result is a vector of length number, with elements
0, 1, ... number - 1. If number is a vector then just the
first element is taken, and if it isn’t an integer then the
floor of the magnitude is used.

unitvec(number) The result is a vector of length number, all elements

having a value 1.

337

338 CHAPTER 17. INTERACTIVE INTERPRETER

\ Name Function \

length(vector) The length of vector.
interpolate(plot.vector)| The result of interpolating the named vector onto the
scale of the current plot. This function uses the
variable polydegree to determine the degree of
interpolation.
deriv(vector) Calculates the derivative of the given vector. This uses
numeric differentiation by interpolating a polynomial
and may not produce satisfactory results (particularly
with iterated differentiation). The implementation only
calculates the derivative with respect to the real
component of that vector’s scale.

vecd(vector) Compute the differential of a vector.
vecmin(vector) Returns the value of the vector element with minimum
value. Same as minimum.
minimum(vector) Returns the value of the vector element with minimum
value. Same as vecmin.
vecmax (vector) Returns the value of the vector element with maximum
value. Same as maximum.
maximum(vector) Returns the value of the vector element with maximum
value. Same as vecmax.
fft (vector) fast fourier transform (17.5.28)
ifft (vector) inverse fast fourier transform (17.5.28)
sortorder(vector) Returns a vector with the positions of the elements in

a real vector after they have been sorted into
increasing order using a stable method (qsort).

timer(vector) Returns CPU-time minus the value of the first vector
element.

clock(vector) Returns wall-time minus the value of the first vector
element.

Several functions offering statistical procedures are listed in the following table:

17.2. EXPRESSIONS, FUNCTIONS, AND CONSTANTS 339

Name Function
rnd(vector) A vector with each component a random integer
between 0 and the absolute value of the input vector’s
corresponding integer element value.
sgauss(vector) Returns a vector of random numbers drawn from a
Gaussian distribution (real value, mean = 0 , standard
deviation = 1). The length of the vector returned is
determined by the input vector. The contents of the
input vector will not be used. A call to sgauss(0) will
return a single value of a random number as a vector of
length 1.
sunif(vector) Returns a vector of random real numbers uniformly
distributed in the interval [-1 .. 1[. The length of the
vector returned is determined by the input vector. The
contents of the input vector will not be used. A call to
sunif(0) will return a single value of a random number
as a vector of length 1.
poisson(vector) Returns a vector with its elements being integers
drawn from a Poisson distribution. The elements of the
input vector (real numbers) are the expected numbers
A. Complex vectors are allowed, real and imaginary
values are treated separately.
exponential(vector) | Returns a vector with its elements (real numbers)
drawn from an exponential distribution. The elements
of the input vector are the respective mean values (real
numbers). Complex vectors are allowed, real and
imaginary values are treated separately.

An input vector may be either the name of a vector already defined or a floating-point
number (a scalar). A scalar will result in an output vector of length 1. A number may
be written in any format acceptable to ngspice, such as 14.6Meg or -1.231e-4. Note that
you can either use scientific notation or one of the abbreviations like MEG or G, but not
both. As with ngspice, a number may have trailing alphabetic characters.

The notation expr [num] denotes the num’th element of expr. For multi-dimensional
vectors, a vector of one less dimension is returned. Also for multi-dimensional vectors,
the notation expr[m][n] will return the nth element of the mth subvector. To get a subrange
of a vector, use the form expr[lower, upper]. To reference vectors in a plot that is not the
current plot (see the setplot command, below), the notation plotname.vecname can be
used. Either a plotname or a vector name may be the wildcard all. If the plotname is all,
matching vectors from all plots are specified, and if the vector name is all, all vectors in the
specified plots are referenced. Note that you may not use binary operations on expressions
involving wildcards - it is not obvious what all 4 all should denote, for instance. Some
(contrived) examples of expressions are shown below.

340 CHAPTER 17. INTERACTIVE INTERPRETER

Expressions examples:

cos(TIME) + db(v(3))

sin(cos(log([1 2 3 4 56 7 8 9 10])))

TIME * rnd(v(9)) - 15 * cos(vin#branch) =~ [7.9e5 8]
not ((ac3.FREQ[32] & tranl.TIME[10]) gt 3)

(sunif (0) ge 0) 7 1.0 : 2.0

mag (fft (v (18)))

Vector names in ngspice may look like @dname[param|, where dname is either the name
of a device instance or of a device model. The vector contains the value of the parameter
of the device or model. See Appendix, Chapt. 31 for details of which parameters are
available. The returned value is a vector of length 1. Please note that finding the value
of device and device model parameters can also be done with the show command (e.g.
show vl : dc).

There are a number of pre-defined constants in ngspice, which you may use by their name.
They are stored in plot (17.3) const and are listed in the table below:

\ Name \ Description H Value ‘
pi T 3.14159...
e e (the base of natural logarithms) 2.71828...
c ¢ (the speed of light) 299,792,458 ™/sec
i i (the square root of -1) V-1
kelvin (absolute zero in centigrade) -273.15°C
echarge q (the charge of an electron) 1.60219¢-19 C
boltz k (Boltzmann’s constant) 1.38062e-237/k
planck h (Planck’s constant) 6.62607e-34 J s
yes boolean 1
no boolean 0
TRUE boolean 1
FALSE boolean 0

These constants are all given in MKS units. If you define another variable with a name
that conflicts with one of these then it takes precedence.

Additional constants may be generated during circuit setup (see .csparam, 2.11).

17.3 Plots

The output vectors of any analysis are stored in plots, a traditional SPICE notion. A
plot is a group of vectors. A first tran command will generate several vectors within
a plot tranl. A subsequent tran command will store their vectors in tran2. Then a
linearize command will linearize all vectors from tran2 and store them in tran3, which
then becomes the current plot. A fft will generate a plot specl, again now the current
plot. The display command always will show all vectors in the current plot. Echo
$plots followed by Return lists all plots generated so far. Setplot followed by Return
will show all plots and ask for a (new) plot to become current. A simple Return will end
the command. Setplot name will change the current plot to 'name’ (e.g. setplot tran2

17.4. COMMAND INTERPRETATION 341

will make tran2 the current plot). A sequence name.vector may be used to access the
vector from a foreign plot.

You may generate plots by yourself: setplot new will generate a new plot named un-
knownl, set curplottitle="a new plot" will set a title, set curplotname=myplot will
set its name as a short description, set curplotdate="Sat Aug 28 10:49:42 2010" will
set its date. Note that strings with spaces have to be given with double quotes.

Of course the notion 'plot” will be used by this manual also in its more common meaning,
denoting a graphics plot or being a plot command. Be careful to get the correct meaning.

17.4 Command Interpretation

17.4.1 On the console

On the ngspice console window (or into the Windows GUI) you may directly type in any
command from 17.5. Within a command sequence, Input/output redirection is available
(see Chapt. 17.8.9 for an example) - the symbols >, >> >& >>&, and < have the same
effects as in the C-shell. This I/O-redirection is internal to ngspice commands, and should
not be mixed up with the ‘external’ I/O-redirection offered by the usual shells (Linux,
MSYS etc.), see 17.5.72.

17.4.2 Scripts

If a word is typed as a command, and there is no built-in command with that name, the
directories in the sourcepath list are searched in order for a file with the name given by
the word. If it is found, it is read in as a command file (as if it were sourced). Before it
is read, however, the variables argc and argv are set to the number of words following
the file-name on the command line, and a list of those words respectively. After the file
is finished, these variables are unset. Note that if a command file calls another, it must
save its argv and argc since they are altered. Also, command files may not be re-entrant
since there are no local variables. Of course, the procedures may explicitly manipulate a
stack.... This way one can write scripts analogous to shell scripts for ngspice.

Note that for the script to work with ngspice, it must begin with a blank line (or whatever
else, since it is thrown away) and then a line with . control on it. This is an unfortunate
result of the source command being used for both circuit input and command file execu-
tion. Note also that this allows the user to merely type the name of a circuit file as a
command and it is automatically run. The commands are executed immediately, without
running any analyses that may be specified in the circuit (to execute the analyses before
the script executes, include a run command in the script).

There are various command scripts installed in /usr/local/lib/spice/scripts (or
whatever the path is on your machine), and the default sourcepath (17.7) includes this
directory, so you can use these command files (almost) like built-in commands.

342 CHAPTER 17. INTERACTIVE INTERPRETER

17.4.3 Add-on to circuit file

Probably the most common way to invoke the commands described in the following Chapt.
17.5is to add a .controlendc section to the circuit input file (see 16.4.3).

Example:

.control

pre_set strict_errorhandling

unset ngdebug

*save outputs and specials

save x1.x1.x1.7 V(9) V(10) V(11) V(12) V(13)

run

display

* plot the inputs, use offset to plot on top of each other
plot v (1) v(2)+4 v(3)+8 v(4)+12 v(5)+16 v(6)+20 v(7)+24 v (8)+28
* plot the outputs, use offset to plot on top of each other
plot v (9) v(10)+4 v(11)+8 v(12)+12 v(13)+16

.endc

17.5 Commands

Commands marked with a * are only available in ngspice, not in ngnutmeg.

17.5.1 Ac*: Perform an AC, small-signal frequency response
analysis

General Form:

ac (DEC | OCT | LIN) N Fstart Fstop

Do an small signal ac analysis (see also Chapt. 15.3.1) over the specified frequency range.
DEC decade variation, and N is the number of points per decade.

OCT stands for octave variation, and N is the number of points per octave.

LIN stands for linear variation, and N is the number of points.

fstart is the starting frequency, and fstop is the final frequency.

Note that in order for this analysis to be meaningful, at least one independent source
must have been specified with an ac value.

In this ac analysis all non-linear devices are linearized around their actual dc operating
point. Each Ls and Cs gets its imaginary value based on the actual frequency step. Each
output vector will be calculated relative to the input voltage (current) given by the ac
value (lin equals to 1 in the example below). The resulting node voltages (and branch
currents) are complex vectors. Therefore you have to be careful using the plot command.

17.5. COMMANDS 343

Example:

* AC test
Iin 1 0 AC 1
R1 1 2 100
L1 2 01

.control
AC LIN 101 10 10K
plot v (2)

plot mag(v(2))
plot db(v(2))

real part !

magnitude

same as vdb(2)

plot imag(v(2)) imaginary part of v(2)

plot real(v(2)) same as plot v(2)

plot phase(v(2)) $ phase in rad

plot cph(v(2)) $ phase in rad, continuous beyond pi
plot 180/PI*phase(v(2)) $ phase in deg

.endc

.end

€N P fH H &P

In addition to the plot examples given above you may use the variants of vxx(node)
described in Chapt. 15.6.2 like vdb(2). An option to suppress OP analysis before AC
may be set for linear circuits (15.1.3).

17.5.2 Alias: Create an alias for a command

General Form:

alias [word] [text ...]

Causes word to be aliased to text. History substitutions may be used, as in C-shell
aliases.

17.5.3 Alter*: Change a device or model parameter

Alter changes the value for a device or a specified parameter of a device or model.

General Form:

alter dev = <expression>
alter dev param = <expression>
alter @dev[param] = <expression>

<expression> must be real (complex isn’t handled right now, integer is fine though, but
no strings. For booleans, use 0/1).

344 CHAPTER 17. INTERACTIVE INTERPRETER

Old style (pre 3f4):

alter device value
alter device parameter value [parameter value]

Using the old style, its first form is used by simple devices that have one principal value
(resistors, capacitors, etc.) where the second form is for more complex devices (bjt’s,
etc.). Model parameters can be changed with the second form if the name contains a ‘#.
For specifying a list of parameters as values, start it with ‘[, followed by the values in
the list, and end with ‘]’. Be sure to place a space between each of the values and before
and after the ‘[’ and ‘]".

Some examples are given below:

Examples (Spice3f4 style):

alter vd = 0.1

alter vg dc = 0.6

alter Oml[w]= 15e-06

alter @vglsin] [-1 1.5 2MEG]
alter @Vi[pwl] = [0 1.2 100p O]

alter may have vectors (17.8.2) or variables (17.8.1) as parameters.

Examples (vector or variable in parameter list):

let newfreq = 10k

alter @vglsin] [-1 1.5 $&newfreq] §$ vector

set newperiod = 150u

alter @Vi[pwl] = [0 1.2 $newperiod 0] $ variable

You may change a parameter of a device residing in a subcircuit, e.g. of MOS transistor
msub]l in subcircuit xm1 (see also Chapt. 31.1).

Examples (parameter of device in subcircuit):

alter m.xml.msubl w = 20u
alter Om.xml.msubl[w] = 20u

17.5. COMMANDS 345

17.5.4 Altermod*: Change model parameter(s)

General form:

altermod mod param = <expression>

altermod @mod[param] = <expression>
Example:

altermod ncl tox = 10e-9

altermod @ncl[tox] = 10e-9

Altermod operates on models and is used to change model parameters. The above
example will change the parameter tox in all devices using the model ncl, which is
defined as

**xx BSIM3v3 model

.MODEL ncl nmos LEVEL=8 version = 3.2.2
acm = 2 mobmod = 1 capmod = 1 noimod = 1
rs = 2.84E+03 rd = 2.84E+03 rsh = 45

+
+
+ tox = 20E-9 xj = 0.28E-6 nch = 1.7E+17
+

If you invoke the model by the MOS device

Ml d g s b ncl w=10u 1=lu

you might also insert the device name M1 for mod as in
altermod M1 tox = 10e-9

The model parameter tox will be modified, however not only for device M1, but for all
devices using the associated MOS model ncl!

If you want to run corner simulations within a single simulation flow, the following option
of altermod may be of help. The existing models are defined during circuit setup at start
up of ngspice. Model parameter sets have been included by .model statements (2.4) in
your input file or included by the .include command. The parameter set with name
ncl may be overrun by the altermod command specifying a model file. All parameter
values fitting to the existing model nc1 will be modified. As usual the 'reset’ command
(see 17.5.57) restores the original values. The model file (see 2.4) has to use the standard
specifications for an input file, the .model section is the relevant part. However the first
line in the model file will be ignored by the input parser, so it should contain only some
title information. The .model statement should appear then in the second or any later
line. More than one .model section may reside in the file.

346 CHAPTER 17. INTERACTIVE INTERPRETER

General form:

altermod modl [mod2 .. modl5] file = <model file name>
altermod modl [mod2 .. modl15] file <model file name>
Example:

altermod ncl file = BSIM3 nmos.mod
altermod ncl pcl file BSIM4_mos.mod

Be careful that the new model file corresponds to the existing model selected by token
ncl. In the example given above, the models ncl (or ncl and pcl) have to be already
included in the netlist before calling altermod. If they are not found in the active circuit,
ngspice will terminate with an error message. The file BSIM3 nmos.mod has to include
a .model line starting with .MODEL ncl nmos.... There is no checking however of the
version and level parameters! So you have to be responsible for offering model data of
the same model name (ncl) and level (e.g. level 8 for BSIM3). Thus no new model is
selectable by altermod, but the parameters of the existing model(s) (here ncl and pcl)
may be changed (partially, completely, temporarily).

17.5.5 Alterparam*: Change value of a global parameter
General form:

alterparam paramname=pvalue
alterparam subname paramname=pvalue

Example (global, top level parameter):

.param npar = b
alterparam npar = 7 $ change npar from 5 to 7
reset

Example (parameter in a subcircuit):

.subckt sname

.param subpar = 13

.ends

alterparam sname subpar = 11 $ change subpar from 13 to 11
reset

Alterparam operates on global parameters or on parameters in a subcircuit defined by
the .param ... statement. A subsequent call to reset (17.5.57) is required for the

17.5. COMMANDS 347

parameter value change to become effective.

17.5.6 Asciiplot: Plot values using old-style character plots

General Form:

asciiplot plotargs

Produce a line printer plot of the vectors. The plot is sent to the standard output, or
you can put it into a file with asciiplot args ... > file. The set options width, height, and
nobreak determine the width and height of the plot, and whether there are page breaks,
respectively. The 'more’ mode is the standard mode if printing to the screen, that is after
a number of lines given by height, and after a page break printing stops with request
for answering the prompt by <return>, ¢’ or ’q’. If everything shall be printed without
stopping, put the command set nomoremode into .spiceinit 16.6 (or spinit 16.5). Note
that you will have problems if you try to asciiplot something with an X-scale that isn’t
monotonic (i.e, something like sin(TIME)), because asciiplot uses a simple-minded
linear interpolation. The asciiplot command doesn’t deal with log scales or the delta
keywords.

17.5.7 Aspice™: Asynchronous ngspice run
General Form:

aspice input-file [output-file]

Start an ngspice run, and when it is finished load the resulting data. The raw data is
kept in a temporary file. If output-file is specified then the diagnostic output is directed
into that file, otherwise it is thrown away.

17.5.8 Bug: Output URL for ngspice bug tracker

General Form:

bug

Get URL to file a bug report. Please go the the URL provided by this command when you
have a bug report to file. Include a short summary of the problem, the version number
and name of the operating system that you are running, the version of ngspice that you
are running, and any relevant ngspice input and output files.

17.5.9 Cd: Change directory

General Form:

cd [directory]

348 CHAPTER 17. INTERACTIVE INTERPRETER

Change the current working directory to directory, or to the user’s home directory (Linux:
HOME, MS Windows: USERPROFILE), if none is given.

17.5.10 Cdump: Dump the control flow to the screen
General Form:

cdump

Dumps the control sequence to the screen (all statements inside the .controlendc
structure before the line with cdump). Indentations show the structure of the sequence.
The example below is printed if you add cdump to /examples/Monte_Carlo/MonteCarlo.sp.

Example (abbreviated):

let mc_runs=5
let run=0

define agauss(nom, avar, sig) (nom + avar/sig * sgauss (0))
define limit (nom, avar) (nom + ((sgauss(0) >=0) ? avar : -avar))
dowhile run < mc_runs

alter cl=unif (1e-09, 0.1)

ac oct 100 250k 10meg

meas ac bw trig vdb(out) val=-10 rise=1 targ vdb(out)
+ val=-10 fall=1

set run="$&run"

let run=run + 1
end
plot db({$scratch}.allv)
echo
print {$scratchl}.bwh
cdump

17.5.11 Circbyline*: Enter a circuit line by line
General Form:

circbyline line

Enter a circuit line by line. line is any circuit line, as found in the *.cir ngspice input
files. The first line is a title line. The entry will be finished by entering .end. Circuit
parsing is then started automatically.

17.5. COMMANDS 349

Example:

circbyline test circuit
circbyline v1 1 0 1
circbyline r1 1 0 1
circbyline .dc vl 0.5 1.5 0.1
circbyline .end

run

plot i(v1)

17.5.12 Codemodel*: Load an XSPICE code model library

General Form:

codemodel [library file]

Load a XSPICE code model shared library file (e.g. analog.cm ...). Only available if
ngspice is compiled with the XSPICE option (--enable-xspice) or with the Windows
executable distributed since ngspice21. This command has to be called from spinit (see
Chapt. 16.5) (or .spiceinit for personal code models, 16.6).

350

CHAPTER 17. INTERACTIVE INTERPRETER

17.5.13 Compose: Compose a vector

General form 1 - List of values:

compose name values valuel [value2 ...]

General forms 2 - Linearly spaced values:

compose name start=val stop=val step=val

compose name center=val span=val step=val

compose name lin=val center=val span=val

compose name lin=val <start=val> <stop=val> <step=val>

General forms 3 - Logarithmically spaced values:

compose name (log=val | dec=val | oct=val) start=val stop=val
compose name (log=val | dec=val | oct=val) center=val span=val

General form 4 - Gaussian distributed values:

compose name gauss=val <mean=val> <sd=val>

General forms 5 - Uniformly distributed values:

compose name unif=val <mean=val> <span=val>
compose name unif=val start=val stop=val

The general form 1 takes the values and creates a new vector, where the values may
be arbitrary expressions. If negative numbers or expressions starting with ’-" are to be
entered, put them into brackets, e.g. (-2.364) or (-5*PI).

The other forms 2 - 5 create a new vector according the following possible parameters:

start Value of namel0] (default: 0)
stop Last value of name
step Difference between successive elements of the linearly spaced vector (default: 1)
lin Number of points, linearly spaced
log Number of points, logarithmically spaced
dec Number of points per decade, logarithmically spaced
oct Number of points per octave, logarithmically spaced
center Where to center the range of points
span Size of the range of points (default for uniform distribution: 1)
gauss Number of points, Gaussian distributed
mean Mean value of the Gaussian (default 0) or uniform distribution (default 0.5)
sd Standard deviation for the Gaussian distribution (default 1)
’ unif ‘ ‘ Number of points, uniformly distributed ‘

17.5. COMMANDS 351

17.5.14 Cutout: Cut out a section of all vectors in a tran plot

General Form:

let cut-tstart = timel
let cut-tstop = time2
cutout

Cut out part of each vector of the current tran plot, from times cut-tstart to cut-tstop
and copy these into a new tran plot. A new scale vector 'time’ will be generated as well.
Vectors that are shorter than the new scale vector will not be copied. If cut-start or
cut-stop are not given, the starting or end times of the current plot are used.

So the simple command cutout may be used to get rid of 0-length vectors in a new tran
plot that may occur if for example something like generating m1 [id] is not served in an
AC simulation.

17.5.15 Dc*: Perform a DC-sweep analysis

General Form:

dc Source Vstart Vstop Vincr [Source2 Vstart2 Vstop2 Vincr2]

Do a dc transfer curve analysis. See the previous Chapt. 15.3.2 for more details. Several
options may be set (15.1.2).

17.5.16 Define: Define a function

General Form:

define function(argl, arg2, ...) expression

Define the function with the name function and arguments argl, arg2, ... to be expression,
which may involve the arguments. When the function is later used, the arguments it is
given are substituted for the formal parameters when it was parsed. If expression is not
present, any existing definition for function is printed, and if there are no arguments then
expressions for all currently active definitions are printed. Note that you may have dif-
ferent functions defined with the same name but different arities. Some useful definitions
are

Example:
define max(x,y) (x > y) * x + (x <=y) * y

define min(x,y) (x < y) * x + (x >= y) * y
define limit(nom, avar) (nom + ((sgauss(0) >= 0) 7 avar

-avar))

352 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.17 Deftype: Define a new type for a vector or plot

General Form:

deftype [v | p] typename abbrev

defines types for vectors and plots. abbrev will be used to parse things like abbrev(name)
and to label axes with M<abbrev>, instead of numbers. Also, the command ‘deftype p
plottype pattern ..’ will assign plottype as the name for any plot with one of the patterns
in its Name: field.

Example:

deftype v capacitance F
settype capacitance moscap
plot moscap vs v(cc)

17.5.18 Delete*: Remove a trace or breakpoint

General Form:

delete [debug-number ...]

Delete the specified saved nodes and parameters, breakpoints and traces. The debug
numbers are those shown by the status command (unless you do status > file, in which
case the debug numbers are not printed).

17.5.19 Destroy: Delete an output data set

General Form:

destroy [plotnames | all]

Release the memory holding the output data (the given plot or all plots) for the specified
runs.

17.5.20 Devhelp: information on available devices

General Form:

devhelp [[-csv] device_name [parameter]]

Devhelp command shows the user information about the devices available in the simulator.
If called without arguments, it simply displays the list of available devices in the simulator.
The name of the device is the name used inside the simulator to access that device. If
the user specifies a device name, then all the parameters of that device (model and

17.5. COMMANDS 353

instance parameters) will be printed. Parameter description includes the internal ID of
the parameter (id#), the name used in the model card or on the instance line (Name),
the direction (Dir) and the description of the parameter (Description). All the fields are
self-explanatory, except the ‘direction’. Direction can be in, out or inout and corresponds
to a ‘write-only’, ‘read-only’ or a ‘read/write’ parameter. Read-only parameters can be
read but not set, write only can be set but not read and read/write can be both set and
read by the user.

The -csv option prints the fields separated by a comma, for direct import into a spread-
sheet. This option is used to generate the simulator documentation.

Example:

devhelp
devhelp resistor
devhelp capacitor ic

17.5.21 Diff: Compare vectors

General Form:

diff plotl plot2 [vec ...]

Compare all the vectors in the specified plots, or only the named vectors if any are given. If
there are different vectors in the two plots, or any values in the vectors differ significantly,
the difference is reported. The variables diff_abstol, diff_reltol, and diff_vntol are used to
determine a significant difference.

17.5.22 Display: List known vectors and types

General Form:

display [varname ...]

Prints a summary of currently defined vectors, or of the names specified. The vectors
are sorted by name unless the variable nosort is set. The information given is the name
of the vector, the length, the type of the vector, and whether it is real or complex data.
Additionally, one vector is labeled [scale]. When a command such as plot is given without
a vs argument, this scale is used for the X-axis. It is always the first vector in a rawfile,
or the first vector defined in a new plot. If you undefine the scale (i.e, let TIME = []), one
of the remaining vectors becomes the new scale (which one is unpredictable). You may
set the scale to another vector of the plot with the command setscale (17.5.69).

354 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.23 Echo: Print text

General Form:

echo [-n] [text | $variable | $&vector]

Echos all text, variables and vectors to the screen or the redirected output location. If
-n included as the first argument, a newline will not be printed. Otherwise one will be
appended to the output.

17.5.24 Edit*: Edit the current circuit

General Form:

edit [file-name]

Print the current ngspice input file into a file, call up the editor on that file and allow the
user to modify it, and then read it back in, replacing the original file. If a file-name is
given, then edit that file and load it, making the circuit the current one. The editor may
be defined in .spiceinit or spinit by a command line like

set editor=emacs

Using MS Windows, to allow the edit command calling an editor, you will have to add
the editor’s path to the PATH variable of the command prompt windows (see here). edit
then calls cmd.exe with e.g. notepad++ and file-name as parameter, if you have set

set editor=notepad++.exe

in .spiceinit or spinit.

17.5.25 Edisplay: Print a list of all the event nodes
General Form:
edisplay
Print the node names, node types, and number of events per node of all event driven

nodes generated or used by XSPICE "A’ devices. See eprint, eprvcd, and 27.2.2 for an
example.

17.5.26 Eprint: Print an event driven node

General Form:

eprint node [node]
eprint node [node] > nodeout.txt $ output redirected

http://en.wikipedia.org/wiki/Environment_variable#Examples_of_DOS_environment_variables

17.5. COMMANDS 355

Print an event driven node generated or used by an XSPICE "A’ device. These nodes are
vectors not organized in plots. See edisplay, eprvcd, and Chapt. 27.2.2 for an example.
Output redirection into a file is available.

17.5.27 Eprvcd: Dump event nodes in VCD format

General Form:

eprvcd nodel node2 .. noden [> filename]

Dump the data of the specified event driven nodes to a .vcd file (see also 18.6.1.4). Such
files may be viewed with an ved viewer, for example gtkwave. See edisplay, eprint,
eprvcd, and 27.2.2 for an example.

17.5.28 FFT: fast Fourier transform of vectors

General Form:

fft vectorl [vector2]

This analysis provides a fast Fourier transform of the input vector(s) in forward direction.
fft is much faster than spec (17.5.79) (about a factor of 50 to 100 for larger vectors).

The fft command will create a new plot consisting of the Fourier transforms of the
vectors given on the command line. Each vector given should be a transient analysis
result, i.e. it should have time as a scale. You will have gotten these vectors by the tran
Tstep Tstop Tstart command.

The vector should have a linear equidistant time scale. Therefore linearization using the
linearize command is recommended before running fft. Be careful selecting a Tstep
value small enough for good interpolation, e.g. much smaller than any signal period
to be resolved by fft (see linearize command). The Fast Fourier Transform will be
computed using a window function as given with the specwindow variable. A new plot
named specx will be generated with a new vector (having the same name as the input
vector, see command above) containing the transformed data.

Ngspice has two FF'T implementations:

1. Standard code is based on the FF'T function provided by John Green ‘FFTs for RISC
2.0°, downloaded 2012, now to be found here. These are a power-of-two routines for
ftt and ifft. If the input size doesn’t fit this requirement the remaining data will be
zero padded up to the next 2N field size. You have to take care of the correlated
change in the scale vector.

2. If available on the operating system (see Chapter 32) ngspice can be linked to
the famous FFTW-3 package, found here. This high performance package has
advantages in speed and accuracy compared to most of the freely available FFT
libraries. It makes arbitrary size transforms for even and odd data.

http://gtkwave.sourceforge.net/
http://hyperarchive.lcs.mit.edu/HyperArchive/Archive/dev/src/ffts-for-risc-2-c.hqx
http://www.fftw.org/

356 CHAPTER 17. INTERACTIVE INTERPRETER

How to compute the £ft from a transient simulation output:

ngspice 8 -> setplot tranl

ngspice 9 -> linearize V(2)

ngspice 9 -> set specwindow=blackman
ngspice 10 -> fft V(2)

ngspice 11 -> plot mag(V(2))

Linearize will create a new vector V(2) in a new plot tran2. The command fft V(2)
will create a new plot specl with vector V(2) holding the resulting data.

The variables listed in the following table control operation of the fft command. Each
can be set with the set command before calling fft.

specwindow: This variable is set to one of the following strings, which will determine
the type of windowing used for the Fourier transform in the spec and £fft command. If
not set, the default is hanning.

none No windowing

rectangular Rectangular window

bartlet Bartlett (also triangle) window
blackman Blackman window

hanning Hanning (also hann or cosine) window
hamming Hamming window

gaussian Gaussian window

flattop Flat top window

T

hanning
blacknan
4.5 F har‘tlt_att

hanning
gaussian
flattop

I I I I I I I i i
a a8 10688 15688 208088 2588 368688 3508 4888 4588

Figure 17.1: Spec and FFT window functions (Gaussian order = 4)

17.5. COMMANDS 357

specwindoworder: This can be set to an integer in the range 2-8. This sets the order
when the Gaussian window is used in the spec and fft commands. If not set, order 2 is
used.

17.5.29 Fourier: Perform a Fourier transform

General Form:

fourier fundamental frequency [expression ...]

Fourier is used to analyze the output vector(s) of a preceding transient analysis (see
17.5.87). It does a Fourier analysis of each of the given values, using the first 10 multiples
of the fundamental frequency (or the first nfreqs multiples, if that variable is set (see
17.7). The printed output is like that of the .four ngspice line (Chapt. 15.6.4). The
expressions may be any valid expression (see 17.2); e.g. v(2). The evaluated expression
values are interpolated onto a fixed-space grid with the number of points given by the
fourgridsize variable, or 200 if it is not set. The interpolation is of degree polydegree
if that variable is set, or 1 otherwise. If polydegree is 0, then no interpolation is done.
This is likely to give erroneous results if the time scale is not monotonic.

The fourier command not only issues a printout, but also generates vectors, one per
expression. The size of the vector is 3 x nfreqs (per default 3 x 10). The name of the
new vector is fouriermn, where m is set by the mth call to the fourier command, n is
the nth expression given in the actual fourier command. fouriermn[0] is the vector of
the 10 (nfregs) frequency values, fouriermn[1] contains the 10 (nfreqs) magnitude values,
fouriermn[2] the 10 (nfreqs) phase values of the result.

Example:

* do the transient analysis

tran 1In 1m

* do the fourier analysis

fourier 3.34e6 v(2) v(3) $ first call
fourier 100e6 v(2) v(3) $ second call
* get individual values

let newtl = fourier11[0][1]

let newt2 = fourier11[1][1]

let newt3 = fourier11[2][1]

let newt4 = fourier12[0] [4]

let newtb = fourier12[1][4]

let newt6 = fourier12[2] [4]

* plot magnitude of second expression (v(3))
* from first call versus frequency
plot fourier12[1] vs fourier12[0]

The plot command from the example plots the vector of the magnitude values, obtained
by the first call to fourier and evaluating the first expression in this call, against the vector
of the frequency values.

358 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.30 Getcwd: Print the current working directory

General Form:

getcwd

Print the current working directory.

17.5.31 Gnuplot: Graphics output via gnuplot

General Form:

gnuplot file plotargs

Like plot, but using gnuplot for graphics output and further data manipulation. ngspice
creates a file called file.plt containing the gnuplot command sequence, a file called file.data
containing the data to be plotted. On Linux, gnuplot may be called directly or via called
via xterm, and offers a Gnuplot console to manipulate the data. On Windows, a plot
window is opened and the command console window is available with a mouse click. Of
course you have to have gnuplot installed on your system. Please see chapter 18.7 for
more details.

17.5.32 Hardcopy: Save a plot to a file for printing

General Form:

hardcopy file plotargs

Just like plot, except that it creates a file called file containing the plot. Various out-
put formats are available, depending on the variable hcopydevtype. It may be set to
postscript or svg. See also Chapt. 18.6 for more details (color etc.).

17.5.33 Help: Print summaries of Ngspice commands

Prints help. This help information, however, is spice3f5-like, stemming from 1991 and
thus is outdated. If commands are given, descriptions of those commands are printed.
Otherwise help for only a few major commands is printed. On Windows, this help

command only provides a link to documentation. Spice3f5 compatible help may be found
in the Spice 3 User manual. For ngspice, please use this manual.

17.5.34 History: Review previous commands

General Form:

history [-r] [number]

https://web.archive.org/web/20180221111839/http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/

17.5. COMMANDS 359

Print out the history, or the last (first if -r is specified) number commands typed at the
keyboard.

A history substitution enables you to reuse a portion of a previous command as you type
the current command. History substitutions save typing. A history substitution normally
starts with a ? ! ?. A history substitution has three parts: an event that specifies a previous
command, a selector that selects one or more words of the event, and some modifiers that
modify the selected words. The selector and modifiers are optional. A history substitution
has the form ! [event] [:]selector[:modifier] ...] The event is required unless it is
followed by a selector that does not start with a digit. The ’:’ can be omitted before the
selector if this selector does not begin with a digit. History substitutions are interpreted
before anything else - even before quotations and command substitutions. The only way
to quote the ’ !’ of a history substitution is to escape it with a preceding backslash. A
> 17 need not be escaped if it is followed by whitespace, ’=’, or * (°.

Ngspice saves each command that you type in a history list, provided that the command
contains at least one word. The commands in the history list are called events. The
events are numbered, with the first command that you issue when you start Ngspice
being number one. The history variable specifies how many events are retained in the
history list.

These are the forms of an event in a history substitution:

' The preceding event. Typing ’!!’ is an easy way to reissue the previous
command.

’ 'n H Event number n.

event and is equivalent to !!.

I-n The n'® previous event. For example, !-1 refers to the immediately preceding

’ Istr H The unique previous event whose name starts with str.

1?7str[?] || The unique previous event containing the string str. The closing *?’ can be
omitted if it is followed by a newline.

You can modify the words of an event by attaching one or more modifiers. Each modifier
must be preceded by a colon. The following modifiers assume that the first selected word
is a file name:

’ T H Removes the trailing .str extension from the first selected word.

’ :h H Removes a trailing path name component from the first selected word.

't Removes all leading path name components from the first selected word.

‘e Remove all but the trailing suffix.

Print the new command but do not execute it.

b
s/old/new

Substitute new for the first occurrence of old in the event line. Any delimiter may
be used in place of ‘/’. The delimiter may be quoted in old and new with a single
backslash. If ‘&’ appears in new, it is replaced by old. A single backslash will quote
the ‘&’ The final delimiter is optional if it is the last character on the input line.

&

Repeat the previous substitution.

g a

Cause changes to be applied over the entire event line. Used in conjunction with
‘s’, as in gs/old/new/, or with ‘&’

G

Apply the following ‘s’ modifier once to each word in the event.

For example, if the command Is /usr/elsa/toys.txt has just been executed, then the com-
mand echo ™:r I™:h it ™ tir produces the output /usr/elsa/toys /usr/elsa toys.txt toys

360 CHAPTER 17. INTERACTIVE INTERPRETER

. The "=’ command is explained in the table below.

You can select a subset of the words of an event by attaching a selector to the event. A
history substitution without a selector includes all of the words of the event. These are
the possible selectors for selecting words of the event:

:0 The command name

[]” The first argument

[:]$ The last argument

n The n' argument (n > 1)

Words 1 through $

| |
| |
]
’ :nl-n2 H Words nl through n2
| |
| |
| |
| |
| |

x* Words = through $

X- Words z through ($ - 1)

[:]-x Words 0 through z

[:]% The word matched by the last ?str? search used

The colon preceding a selector can be omitted if the selector does not start with a digit.

The following additional special conventions provide abbreviations for commonly used
forms of history substitution:

o An event specification can be omitted from a history substitution if it is followed by
a selector that does not start with a digit. In this case the event is taken to be the
event used in the most recent history reference on the same line if there is one, or
the preceding event otherwise. For example, the command echo !?qucs?” !$ echoes
the first and last arguments of the most recent command containing the string qucs

o If the first non-blank character of an input line is "™, the ™" is taken as an abbre-
viation for !:s” . This form provides a convenient way to correct a simple spelling
error in the previous line. For example, if by mistake you typed the command cat
/etc/lasswd you could re-execute the command with lasswd changed to passwd by

typing “T'p .

e You can enclose a history substitution in braces to prevent it from absorbing the
following characters. In this case the entire substitution except for the starting
"I' must be within the braces. For example, suppose that you previously issued
the command cp accounts ../money . Then the command !cps looks for a previous
command starting with cps while the command !{cp}s turns into a command cp
accounts ../moneys .

Some characters are handled specially as follows:

17.5. COMMANDS 361

~ \ Expands to the home directory

Matches any string of characters in a filename

| |
*] |
7 H Matches any single character in a filename ‘
| |

[

- || Used within [] to specify a range of characters. For example, [b-k] matches on any
character between and including ‘b’ through to ‘k’.

Matches any of the characters enclosed in a filename

If the ™ is included within [] as the first character, then it negates the following
characters matching on anything but those. For example, [Tagm] would match on

anything other than ‘a’, ‘g’ and ‘m’. ["a-zA-Z] would match on anything other
than an alphabetic character.

The wildcard characters *; 7, [, and] can be used, but only if you unset noglob first. This
makes them rather useless for typing algebraic expressions, so you should set noglob again
after you are done with wildcard expansion.

When the environment variable HOME exists (on Unix, Linux, or CYGWIN), history
permanently stores previous command lines in the file $HOME/ . ngspice_history. When
this variable does not exist (typically on Windows when the readline library is not officially
installed), the history file is called .history and put in the current working directory.

The history command is part of the readline or editline package. The readline pro-

gram provides a command line editor that is configurable through the file .inputrc.

The path to this configuration file is either found in the shell variable INPUTRC, or

it is (on Unix/Linux/CYGWIN) the file ~/.inputrc in the user’s home directory. On
Windows systems, the configuration file is /Users/<username>/.inputrc, unless the read-

line library was officially installed. In that case the filename is taken from the Win-

dows registry and points to a location that the user specified during installation. See
https://web.archive.org/web/20190527085247 /https: / /tiswww.case.edu/php/chet/readline/rltop.html
for detailed documentation. Some useful commands are below.

Left/Right arrow \ Move one character to the left or right ‘

Home/End Move to beginning or end of line
Up/Down arrow Cycle through the history buffer
C-_- Undo last editing command

C-r Incremental search backward
TAB completion of a file name

C-ak Erase the command line (kill)
C-y Retrieve last kill (yank)

C-u Erase from cursor to start of line

17.5.35 Inventory: Print circuit inventory

General Form:

inventory

This commands accepts no argument and simply prints the number of instances of a
particular device in a loaded netlist.

https://web.archive.org/web/20190527085247/https://tiswww.case.edu/php/chet/readline/rltop.html

362 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.36 Iplot*: Incremental plot

General Form:

iplot [node ...]
Incrementally plot the values of the nodes while ngspice runs. The iplot command can be
used with the where command to find trouble spots in a transient simulation.

The @name [param] notation (31.1) might not work yet.

17.5.37 Jobs*: List active asynchronous ngspice runs

General Form:

jobs

Report on the asynchronous ngspice jobs currently running. Ngnutmeg checks to see if
the jobs are finished every time you execute a command. If it is done then the data is
loaded and becomes available.

17.5.38 Let: Assign a value to a vector

General Form:

let name = expr

Creates a new vector called name with the value specified by expr, an expression as
described above. If expr is [| (a zero-length vector) then the vector becomes undefined.
Individual elements of a vector may be modified by appending a subscript to name (ex.
name[0]). If there are no arguments, let is the same as display.

The command let creates a vector in the current plot. Use setplot (17.5.68) to create a
new plot.

There is no straightforward way to initialize a new vector. In general, one might want
to have let initialize a slice (i.e. name[4:4,21:23] = [1 2 3]) of a multi-dimensional
matrix of arbitrary type (i.e. real, complex ..), where all values and indexes are arbitrary
expressions. This will fail. The procedure is to first allocate a real vector of the appropriate
size with either vector(), unitvec(), or [n1 n2 n3 ... J. The second step is to
optionally change the type of the new vector (to complex) with the j() function. The
third step reshapes the dimensions, and the final step (re)initializes the contents, like so:

let a = j(vector(10))
reshape a [2] [5]
let a[0][0] = (pi,pi)

Initialization of real vectors can be done quite efficiently with compose:

17.5. COMMANDS 363

compose a values (pi, pi) (1,1) (2,sqrt(7)) (boltz,e)

reshape a [2] [2]

See also unlet (17.5.91), compose (17.5.13).

17.5.39 Linearize*: Interpolate to a linear scale

General Form:

linearize vec

Create a new plot with all of the vectors in the current plot, or only those mentioned as
arguments to the command, all data linearized onto an equidistant time scale.

How to compute the fft from a transient simulation output:

ngspice 8 -> setplot tranl

ngspice 9 -> linearize V(2)

ngspice 9 -> set specwindow=blackman
ngspice 10 -> fft V(2)

ngspice 11 -> plot mag(V(2))tstep

Linearize will redo the vectors vec or renew all vectors of the current plot (e.g. tran3)
if no arguments are given and store them into a new plot (e.g. tran4). The new vectors
are interpolated onto a linear time scale, which is determined by the values of tstep,
tstart, and tstop in the currently active transient analysis. The currently loaded input
file must include a transient analysis (a tran command may be run interactively before the
last reset, alternately), and the current plot must be from this transient analysis. The
length of the new vector is floor((tstop - tstart) / tstep + 1.5). This command
is needed for example if you want to do an FFT analysis (17.5.28). Please note that the
parameter tstep of your transient analysis (see Chapt. 15.3.9) has to be small enough
to get adequate resolution, otherwise the command linearize will do sub-sampling of
your signal. If no circuit is loaded and the data have been acquired by the load (17.5.41)
command, Linearize will take time data from transient analysis scale vector.

The linearize command may be used to create a linearized cutout of the original vec-
tor by defining the vectors lin-tstart, lin-tstop, and lin-tstep before issuing the
linearize command. At least 1in-tstart or lin-tstop has to be defined. This may be
used to plot just a portion of a vector, or to prepare a better fft by skipping the start-up
phase of a ring oscillator.

364 CHAPTER 17. INTERACTIVE INTERPRETER

Excerpt from the ring oscillator example soi/ring51 40.sp:

* original time scale by .tran command is from O to 16ns
save out25 outb0

run

plot out25 outbO

let lin-tstart = 4n $ skip the start-up phase

let lin-tstop = 14n $ end earlier(just for demonstration)
let lin-tstep = bp

linearize out25 outb0

plot out25 outbO

The linearize command should explicitly name the vectors of interest. Otherwise warn-
ing messages pop up that the vectors lin-tstart etc cannot be linearized.

17.5.40 Listing*: Print a listing of the current circuit

General Form:

listing [logicall] [physical] [deck] [expand] [param]

If the logical argument is given, the listing is with all continuation lines collapsed into one
line, and if the physical argument is given the lines are printed out as they were found
in the file. The default is logical. A deck listing is just like the physical listing, except
without the line numbers it recreates the input file verbatim (except that it does not
preserve case). If the word expand is present, the circuit is printed with all subcircuits
expanded. The option param allows printing all parameters and their actual values.

17.5.41 Load: Load rawfile data

General Form:

load [filename]

Loads either binary or ascii format rawfile data from the files named. The default file
name is rawspice.raw, or the argument to the -r flag if there was one.

17.5.42 Mc_ source*: Reload the circuit netlist from an internal
storage

General Form:

mc_source

Upon reading a netlist, after its preprocessing is finished, the modified netlist is stored
internally. This command will reload this netlist and create a new circuit inside ngspice.
This command is used in conjunction with the alterparam command.

17.5. COMMANDS 365

17.5.43 Meas*: Measurements on simulation data

General Form (example):

MEAS {DC|AC|TRAN|SP} result TRIG trig_variable VAL=val <TD=td>
<CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST> <FALL=#|FALL=LAST>
<TRIG AT=time> TARG targ_variable VAL=val <TD=td>

<CROSS=# | CROSS=LAST> <RISE=#|RISE=LAST>

<FALL=#| FALL=LAST> <TRIG AT=time>

Most of the input forms found in 15.4 may be used here with the command meas instead of
.meas (ure). Using meas inside the .controlendc section offers additional features
compared to the .meas use. meas will print the results as usual, but in addition will
store its measurement result (typically the token result given in the command line)
in a vector. This vector may be used in following command lines of the script as an
input value of another command. For details of the command see Chapt. 15.4. The
measurement type SP is only available here, because a fft command will prepare the
data for SP measurement. Option autostop (15.1.4) is not available.

Unfortunately par (’ezpression’) (15.6.6) will not work here, i.e. inside the .control
section. You may use an expression by the let command instead, giving let vec _new =
ETPTESSLON.

Replacement for par(’ezpression’) in meas inside the .control section

let vdiff = v(nl)-v(n0)

meas tran vtest find vdiff at=0.04e-3

*the following will not do here:

*meas tran vtest find par(’v(nl)-v(n0)’) at=0.04e-3

17.5.44 Mdump™: Dump the matrix values to a file (or to con-
sole)

General Form:

mdump <filename>

If <filename> is given, the output will be stored in file <filename>, otherwise dumped
to your console.

17.5.45 Mrdump*: Dump the matrix right hand side values to
a file (or to console)

General Form:

mrdump <filename>

366 CHAPTER 17. INTERACTIVE INTERPRETER

If <filename> is given, the output will be appended to file <filename>, otherwise dumped
to your console.

Example usage after ngspice has started:

* Dump matrix and RHS values after 10 and 20 steps
* of a transient simulation
source rc.cir

step 10

mdump ml.txt

mrdump mrl.txt

step 10

mdump m2.txt

mrdump mr2.txt

* just to continue to the end
step 10000

You may create a loop using the control structures (Chapt. 17.6).

17.5.46 Noise*: Noise analysis

See the .NOISE analysis (15.3.4) for details.

The noise command will generate two plots (typically named noisel and noise2) with
Noise Spectral Density Curves and Integrated Noise data. To write these data into output
file(s), you may use the following command sequence:

Command sequence for writing noise data to file(s):

.control

tran le-6 1le-3

write test _tran.raw

noise V(out) vinp dec 333 1 1e8 16
print inoise_total onoise_total

xfirst option to get all of the output (two files)
setplot noisel

write test noisel.raw all

setplot noise?2

write test_noise2.raw all

* second option (all in one raw-file)
write testall.raw noisel.all noise2.all
.endc

17.5.47 Op*: Perform an operating point analysis

General Form:

op

17.5. COMMANDS 367

Do an operating point analysis. See Chapt. 15.3.5 for more details.

17.5.48 Option*: Set a ngspice option
General Form:

option [option=val] [option=val]

Set any of the simulator variables as listed in Chapt. 15.1. See this chapter also for more
information on the available options. The option command without any argument lists
the current options set in the simulator. Multiple options may be set in a single line.

The following example demonstrates a control section, which may be added to your circuit
file to test the influence of variable trtol on the number of iterations and on the simulation
time.

Command sequence for testing option trtol:

.control
set noinit

option trtol=1

echo

echo trtol=1

run

rusage traniter trantime
reset

option trtol=3

echo

echo trtol=3

run

rusage traniter trantime
reset

option trtol=5

echo

echo trtol=b

run

rusage traniter trantime
reset

option trtol=7

echo

echo trtol=7

run

rusage traniter trantime
plot tranl.v(out25) tranl.v(out50) v(out25) v(outb50)
.endc

368 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.49 Plot: Plot vectors on the display

General Form:

plot exprl [vs scale_exprl] [expr2 [vs scale_expr2]]
[ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi]
[xcompress comp] [xdelta xdel] [ydelta ydell]

[xlog] [ylogl] [loglogl] [nogrid]

[linplot] [combplot] [pointplot] [nointerp] [retraceplot]
[polar] [smith] [smithgridl

[xlabel word] [ylabel word] [title wordl]

[samep] [linear] [kicad] [plainplot]

Plot the given vectors or exprs on the screen (if you are on a graphics terminal). The
x1limit and ylimit arguments determine the high and low x- and y-limits of the axes,
respectively. The xindices arguments determine what range of points are to be plotted
- everything between the xilo’th point and the xihi’th point is plotted. The xcompress
argument specifies that only one out of every comp points should be plotted. If an xdelta
or a ydelta parameter is present, it specifies the spacing between grid lines on the X-
and Y-axis. These parameter names may be abbreviated to x1, yl, xind, xcomp, xdel,
and ydel respectively.

The scal expr argument(s) are expressions to use as the scale on the x-axis instead
of the default scale for the plot. If xlog or ylog are present, then the X or Y scale,
respectively, are logarithmic (loglog is the same as specifying both). The xlabel and
ylabel arguments cause the specified labels to be used for the X and Y axes, respectively.

If samep is given, the values of the other parameters from the previous plot, hardcopy,
or asciiplot command are used even if they are redefined on the command line.

The title argument is used in the headline of the plot window and replaces the default
text, which is ‘actual plot: first line of input file’.

The linear keyword is used to override a default logscale plot (as in the output for an
AC analysis).

The keywords linplot, combplot and pointplot select different plot styles. The keyword
nointerp turns off interpolation of the vector data, nogrid suppresses the drawing of
gridlines. retraceplot may be required if the scale vector (the x axis) has values which
do not grow monothonically (e.g. plotting a circle or the hyseresis loop of a memristor).
Without this keyword retracing values (x values moving forth and back) are suppressed.

Finally, the keyword polar generates a polar plot. To produce a Smith plot, use the
keyword smith. Note that the data is transformed, so for Smith plots you will see the
data a + jb transformed to

a=(a*+b—1)/((a+1)*+b% (17.1)

b= (2xb)/((a+1)*+b%) (17.2)

To produce a polar plot with a Smith grid but without performing the Smith transform,
use the keyword smithgrid.

17.5. COMMANDS 369

Keyword retraceplot may be useful if the x-axis values are non-monotonic. Whereas
time is always growing monotonically, during plotting ynew vs xnew xnew may par-
tially increase, then decrease again. If this occurs, plotting is suppressed as per default.
retraceplot will enable plotting all data.

If you specify plot all, all vectors (including the scale vector) are plotted versus the scale
vector (see commands display (17.5.22) or setscale (17.5.69) on viewing the vectors of
the current plot). The command plot ally will not plot the scale vector, but all other
'real” y values. The command plot alli selects all current vectors, the command plot
allv all voltage vectors.

If the vector name to be plotted contains = , / or other tokens that may be taken for
operators of an expression, and plotting fails, try enclosing the name in double quotes,
e.g. plot "/vout".

Plotting of complex vectors, as may occur after an ac simulation, requires special consid-
erations. Please see Chapt. 17.5.1 for details.

Keyword kicad will enable plotting vectors with leading character / (see 16.14.8) by plac-
ing double quotes around the token, keyword plainplot will allow this by suppressing the
evaluation of any expression containing such characters. vcl vs ve2 is not supported with
using plainplot. The same effect may be generated by setting the variable plainplot.

17.5.50 Pre__<command>: execute commands prior to parsing
the circuit

General Form:

pre_<command >

All commands in a .controlendc section are executed after the circuit has been
parsed. If you need command execution before circuit parsing, you may add these com-
mands to the general spinit or local .spiceinit files. Another possibility is adding a leading
pre_ to a command within the .control section of an ordinary input file, which forces
the command to be executed before circuit parsing. Basically <command> may be any
command listed in Chapt. 17.5, however only a few commands are indeed useful here.
Some examples are given below:

Examples:

pre_unset ngdebug
pre_set strict_errorhandling
pre_codemodel mymod.cm

pre_<command> is available only in the .control mode (see 16.4.3), not in interactive mode,
where the user may determine when a circuit is to be parsed, using the source command
(17.5.78) .

370 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.51 Print: Print values

General Form:
print [col] [line] expr

Prints the vector(s) described by the expression expr. If the col argument is present,
print the vectors named side by side. If 1line is given, the vectors are printed horizontally.
col is the default, unless all the vectors named have a length of one, in which case 1ine is
the default. The options width (default 80) and height (default 24) are effective for this
command (see asciiplot 17.5.6). The 'more’ mode is the standard mode if printing to
the screen, that is after a number of lines given by height, and after a page break printing
stops with request for answering the prompt by <return> (print next page), ’c’ (print
rest) or 'q’ (quit printing). If everything shall be printed with stopping after each page
(only useful in interactive mode, because need manual continuation), use the command
set moremode before printing or put it into .spiceinit 16.6 (or spinit 16.5). If the expression
is all, all of the vectors available are printed. Thus print col all > filename prints
everything into the file filename in SPICE2 format. The scale vector (time, frequency)
is always in the first column unless the variable noprintscale is true. You may use the
vectors alli, allv, ally with the print command, but then the scale vector will not
be printed.

Examples:

print all
set width=300
print v(1) > outfile.out

17.5.52 Psd: power spectral density of vectors

General Form:
psd ave vectorl [vector2]

Calculate the single sided power spectral density of signals (vectors) resulting from a
transient analysis. Windowing is available as described in the fft command (17.5.28).
The FFT data are squared, summarized, weighted and printed as total noise power up to
Nyquist frequency, and as noise voltage or current.

ave is the number of points used for averaging and smoothing in a postprocess, useful
for noisy data. A new plot vector is created that holds the averaged results of the FF'T,
weighted by the frequency bin. The result can be plotted and has the units V"2/Hz or
A72/Hz, depending on the the input vector.

17.5. COMMANDS 371

17.5.53 Quit: Leave Ngspice

General Form:

quit
quit [exitcodel

Quit ngspice. Ngspice will ask for an acknowledgment if parameters have not been saved.
If unset askquit is specified, ngspice will terminate immediately.

The optional parameter exitcode is an integer that sets the exit code for ngspice. This
is useful to return a success/fail value to the operating system.

17.5.54 Rehash: Reset internal hash tables

General Form:

rehash

Recalculate the internal hash tables used when looking up UNIX commands, and make all
UNIX commands in the user’s PATH available for command completion. This is useless
unless you have set unixcom first (see above).

17.5.55 Remcirc*: Remove the current circuit
General Form:

remcirc

This command removes the current circuit from the list of circuits sourced into ngspice.
To select a specific circuit, use setcirc (17.5.67). To load another circuit, refer to source
(17.5.78). The new active circuit will be the circuit on top of the list of the remaining
circuits.

17.5.56 Remzerovec: Remove zero length vectors

General Form:

remzerovec

This command removes vectors of length zero from the current plot.

17.5.57 Reset*: Reset an analysis

General Form:

reset

372 CHAPTER 17. INTERACTIVE INTERPRETER

Throw out any intermediate data in the circuit (e.g, after a breakpoint or after one or
more analyses have been done), and re-parse the input file. The circuit can then be re-run
from it’s initial state, overriding the effect of any set or alter commands. These two
need to be repeated after the reset command.

Reset may be required in simulation loops preceding any run (or tran ...) command.

Reset is required after an alterparam command (17.5.5) for making the parameter change
effective.

17.5.58 Reshape: Alter the dimensionality or dimensions of a
vector

General Form:

reshape vector vector

or
reshape vector vector ... [dimension, dimension, ...]
or

reshape vector vector ... [dimension][dimension]

This command changes the dimensions of a vector or a set of vectors. The final dimension
may be left off and it will be filled in automatically. If no dimensions are specified, then
the dimensions of the first vector are copied to the other vectors. An error message of the
form ’dimensions of x were inconsistent’ can be ignored.

Example:

* generate vector with all (here 30) elements
let newvec=vector (30)

* reshape vector to format 3 x 10

reshape newvec [3][10]

* access elements of the reshaped vector
print newvec [0] [9]

print newvec [1] [5]

let newt = newvec [2] [4]

17.5.59 Resume®*: Continue a simulation after a stop
General Form:

resume

Resume a simulation after a stop or interruption (control-C).

17.5. COMMANDS 373

17.5.60 Rspice*: Remote ngspice submission

General Form:

rspice <input file>

Runs a ngspice remotely taking the input file as a ngspice input file, or the current circuit
if no argument is given. Ngspice waits for the job to complete, and passes output from
the remote job to the user’s standard output. When the job is finished the data is loaded
in as with aspice. If the variable rhost is set, ngnutmeg connects to this host instead of
the default remote ngspice server machine. This command uses the rsh command and
thereby requires authentication via a .rhosts file or other equivalent method. Note that
rsh refers to the ‘remote shell” program, which may be remsh on your system; to override
the default name of rsh, set the variable remote_shell. If the variable rprogram is set,
then rspice uses this as the pathname to the program to run on the remote system.

Note: rspice will not acknowledge elements that have been changed via the alter or altermod
commands.

17.5.61 Run™*: Run analysis from the input file

General Form:

run [rawfile]

Run the simulation as specified in the input file. If there were any of the control lines
.ac, .op, .tran, or .dc, they are executed. The output is put in rawfile if it was given,
in addition to being available interactively.

17.5.62 Rusage: Resource usage

General Form:

rusage [resource ...]

Print resource usage statistics. If any resources are given, just print the usage of that
resource. Most resources require that a circuit be loaded. Currently valid resources are

time Total Analysis Time

cputime The amount of time elapsed since the last rusage cputime call.
totalcputime Total elapsed time used so far.

decklineno Number of lines in deck

netloadtime Nelist loading time

netparsetime Netlist parsing time

374 CHAPTER 17. INTERACTIVE INTERPRETER

faults Number of page faults and context switches (BSD only).
space Data space used (output is depending on the operating system).
temp Operating temperature.

tnom Temperature at which device parameters were measured.
equations Number of circuit equations

totiter Total iterations

accept Accepted time-points

rejected Rejected time-points

loadtime Time spent loading the circuit matrix and RHS.
reordertime Matrix reordering time

lutime L-U decomposition time

solvetime Matrix solve time

trantime Transient analysis time

tranpoints Transient time-points

traniter Transient iterations

trancuriters Transient iterations for the last time point
tranlutime Transient L-U decomposition time
transolvetime Transient matrix solve time

everything All of the above.

all All of the above.

If rusage is given without any parameter, a sequence of outputs is printed using the
following rusage parameters: time, totalcputime, space.

17.5.63 Save*: Save a set of outputs

General Form:

save [all | outvec ...]

Save a set of outputs, discarding the rest (if keyword all is not given). May be used to
dramatically reduce memory (RAM) requirements if only a few useful node voltages or
branch currents are saved.

Node voltages may be saved by giving the nodename or v(nodename). Currents through
an independent voltage source are given by i(sourcename) or sourcename# branch. Internal

17.5. COMMANDS 375

device data (31.1) are accepted as @Qdev[param|. The syntax is identical to the .save
command (15.6.1).

Note: In the .controlendc section save must occur before the run or tran
command to become effective.

If a node has been mentioned in a save command, it appears in the working plot after
a run has completed, or in the rawfile written by the write (17.5.96) command. For
backward compatibility, if there are no save commands given, all outputs are saved. If
you want to trace (17.5.86) or plot (17.5.49) a node, you have to save it explicitly, except
for all given or no save command at all.

When the keyword all appears in the save command, all node voltages, voltage source
currents and inductor currents are saved in addition to any other vectors listed.

Save voltage and current:

save vd _node vs#branch v(vs_node) i(vs2)

Save allows storing and later access of internal device parameters. e.g. in a command
like

Save internal parameters:

save all @mni[gnm]
saves all standard analysis output data plus gm of transistor mnl to internal memory (see
also 31.1).
save may store data from nodes or devices residing inside of a subcircuit:

Save voltage on node 3 (top level), node 8 (from inside subcircuit x2) and current through
vmeas (from subcircuit x1):

save 3 x1.x2.x1.x2.8 v.x1.x1.x1.vmeas#branch

Save internal parameters within subcircuit:

save Om.xmos3.mnl[gm]

Use commands listing expand (17.5.40, before the simulation) or display (17.5.22,
after simulation) to obtain a list of all nodes and currents available. Please see Chapt. 31
for an explanation of the syntax for internal parameters.

Entering several save lines in a single .control section will accumulate the nodes and
parameters to be saved. If you want to exclude a node, you have to get its number by
calling status (17.5.80) and then calling delete number (17.5.18).

Don’t save anything:

save none

Useful if shared ngspice library is used and data are immediately transferred to the caller
via the shared ngspice interface.

376 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.64 Sens*: Run a sensitivity analysis

General Form:

sens output_variable
sens output_variable ac (DEC | OCT | LIN) N Fstart Fstop

Perform a Sensitivity analysis. output_variable is either a node voltage (ex. v(1)
or v(A,out)) or a current through a voltage source (e.g. i(vtest)). The first form
calculates DC sensitivities, the second form AC sensitivities. The output values are in
dimensions of change in output per unit change of input (as opposed to percent change
in output or per percent change of input).

17.5.65 Set: Set the value of a variable

General Form:

set [word]
set [word = valuel

Set the value of word to value, if it is present. You can set any word to be any value,
numeric or string. If no value is given then the value is the Boolean ‘true’. If you enter a
string, you have to enclose it in double quotes. Set saves the lower case version of a word
string.

The value of word may be inserted into a command by writing $word. If a variable is set
to a list of values that are enclosed in parentheses (which must be separated from their
values by white space), the value of the variable is the list.

The variables used by ngspice are listed in section 17.7.
Set entered without any parameter will list all variables set, and their values, if applicable.

Be advised that set sets the lower case variant of word. An exceptions to this rule is the
variable sourcepath.

Set automatically tries to distinguish between values given as numbers, strings or lists.
If a string starts with a numerical value, like 2N5401 C and is not enclosed in double
quotes, it is interpreted as a real number 2n, i.e. 2e-9. The rest of the string is discarded.

A variable may be set to a value read from a file by 1/O redirection.

Example:

set invar < infile.txt
echo $invar

echo $invar [2]

echo $invar [5]

With the input text file

17.5. COMMANDS 377

infile.txt:

* testing set input from file
3

NeXt

4

5 and 7

you will get the output from echo

3 NeXt 4 5 and 7
NeXt
and

Lines starting with "*” are comment lines and will be ignored. Lines with multiple tokens
are stored as list vectors, lines with a single token as string.

Another option to set a variable from outside is the 1/O redirection by backquotes or
backticks (see 17.10), if you run ngspice as a console application.

17.5.66 Setcs: Set the value of a variable, case preserved

General Form:

setcs [word]
setcs [word = valuel

Set the value of word to value, if it is present. You can set any word to be any value,
numeric or string. If no value is given then the value is the Boolean ‘true’. If you enter a
string, you have to enclose it in double quotes. Setcs keeps the case of a word string.

The value of word may be inserted into a command by writing $word. If a variable is set
to a list of values that are enclosed in parentheses (which must be separated from their
values by white space), the value of the variable is the list.

The variables used by ngspice are listed in section 17.7.

Setcs entered without any parameter will list all variables set, and their values, if appli-
cable.

Setcs automatically tries to distinguish between values given as numbers, strings or lists.
If a string starts with a numerical value, like 2N5401 C and is not enclosed in double
quotes, it is interpreted as a real number 2n, i.e. 2e-9. The rest of the string is discarded.

17.5.67 Setcirc*: Change the current circuit

General Form:

setcirc [circuit number]

378 CHAPTER 17. INTERACTIVE INTERPRETER

The current circuit is the one that is used for the simulation commands below. When
a circuit is loaded with the source command (see below, 17.5.78) it becomes the current
circuit.

Setcirc followed by 'return’ without any parameters lists all circuits loaded.

17.5.68 Setplot: Switch the current set of vectors

General Form:

setplot

setplot [plotname]
setplot previous
setplot next
setplot new

Set the current plot to the plot with the given name, or if no name is given, prompt the
user with a list of all plots generated so far. (Note that the plots are named as they
are loaded, with names like tranl or op2. These names are shown by the setplot and
display commands and are used by diff, below.) If the ‘New’ item is selected, a new plot
is generated that has no vectors defined.

Note that here the word plot refers to a group of vectors that are the result of one ngspice
run. When more than one file is loaded in, or more than one plot is present in one file,
ngspice keeps them separate and only shows you the vectors in the current plot with the
display (17.5.22) command. setplot previous will show the previous plot in the plot list, if
available, setplot next the next plot. If not available, a warning is issued and the current
plot stays active. Setplot will also allow selecting the digital event nodes that have been
created during the simulation that made the analog plot.

17.5.69 Setscale: Set the scale vector for the current plot

General Form:

setscale [vector]

Defines the scale vector for the current plot. If no argument is given, the current scale
vector is printed. The scale vector provides the values for the x-axis in a 2D plot.

17.5.70 Setseed: Set the seed value for the random number gen-
erator

General Form:

setseed [number]

When this command is given, the seed value for the random number generator is set to
number. Number has to be an integer greater than 0. The random numbers retrieved after

17.5. COMMANDS 379

this command are a sequence of pseudo random numbers with a huge period. Setting
the seed value will provide a reproducible sequence of random numbers, i.e. the same
seed results in the same sequence. See also the options SEED and SEEDINFO in chapt.
15.1.1and chapt. 22 on statistical circuit analysis..

17.5.71 Settype: Set the type of a vector

General Form:

settype type vector

Change the type of the named vectors to type. Type names can be found in the following
table.

’ Type \ Unit \ \ Type \ Unit ‘
notype - pole -
time S ZEro -
frequency Hz s-param -
voltage \% temp-sweep | Celsius
current A res-sweep Ohms

voltage-density | V/vVHz impedance | Ohms
current-density | A/V Hz admittance S

voltage™2-density | V/Hz power W
current” 2-density | A/Hz phase Degree
temperature Celsius decibel dB

charge C capacitance F

17.5.72 Shell: Call the command interpreter

General Form:

shell [command]

Call the operating system’s command interpreter; execute the specified command or call
for interactive use.

17.5.73 Shift: Alter a list variable

General Form:

shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements (i.e,
the number leftmost elements are removed). The default varname is argv, and the default
number is 1.

380 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.74 Show?*: List device state

General Form:

show devices [: parameters] |,

The show command prints out tables summarizing the operating condition of selected
devices. If devices is missing, a default set of devices are listed, if devices is a single
letter, devices of that type are listed. A device’s full name may be specified to list only
that device. Finally, devices may be selected by model by using the form #modelname.

If no parameters are specified, the values for a standard set of parameters are listed. If
the list of parameters contains a ‘+’, the default set of parameters is listed along with
any other specified parameters.

For both devices and parameters, the word all has the obvious meaning.

Note: there must be spaces around the ‘:” that divides the device list from the parameter
list.

17.5.75 Showmod*: List model parameter values

General Form:

showmod models [: parameters] ,

The showmod command operates like the show command (above) but prints out model
parameter values. The applicable forms for models are a single letter specifying the device
type letter (e.g. m, or c), a device name (e.g. m.xbuf22.m4b), or #modelname (e.g. #pl).

Typical usage (e.g. for BSIM4 model):
showmod #cmosn #cmosp : lkvthO vthO

Note: there must be spaces around the ‘:’ that divides the device list from the parameter
list.

17.5.76 Snload*: Load the snapshot file

General Form:

snload circuit-file file

snload reads the snapshot file generated by snsave (17.5.77). circuit-file is the original
circuit input file. After reading, the simulation may be continued by resume (17.5.59).

An input script for loading circuit and intermediate data, resuming simulation and plot-
ting is shown below:

17.5. COMMANDS 381

Typical usage:

* SCRIPT: ADDER - 4 BIT BINARY

* script to reload circuit and continue the simulation
* begin with editing the file location

* to be started with ’ngspice adder_snload.script’
.control

* cd to where all files are located

cd D:\Spice_general\ngspice\examples\snapshot
* load circuit and snpashot file

snload adder_mos_circ.cir adder500.snap

* continue simulation

resume

* plot some node voltages

plot v(10) v(11) v(12)

.endc

Due to a bug we currently need the term ’script’ in the title line (first line) of the script.

17.5.77 Snsave*: Save a snapshot file

General Form:

snsave file

If you run a transient simulation and interrupt it by e.g. a stop breakpoint (17.5.82),
you may resume simulation immediately (17.5.59) or store the intermediate status in a
snapshot file by snsave for resuming simulation later (using snload (17.5.76)), even with
a new instance of ngspice.

382 CHAPTER 17. INTERACTIVE INTERPRETER

Typical usage:

Example input file for snsave

load a circuit (including transistor models and .tran command)
starts transient simulation until stop point

store intermediate data to file

begin with editing the file location

to be run with ’ngspice adder_mos.cir’

* %X X X *

.include adder mos _circ.cir

.control

*cd to where all files are located

cd D:\Spice_general\ngspicelexamples\snapshot
unset askquit

set noinit

*interrupt condition for the simulation
stop when time > 500n

* simulate

run

* store snapshot to file

snsave adderb00.snap

quit

.endc

.END

adder_mos__circ.cir is a circuit input file, including the netlist, .model and .tran state-
ments.

Unfortunately snsave/snload will not work if you have XSPICE devices (or V/I sources
with polynomial statements) in your input deck.

17.5.78 Source: Read a ngspice input file

General Form:

source infile

For ngspice: read the ngspice input file infile, containing a circuit netlist. Ngspice control
commands may be included in the file, and must be enclosed between the lines .control
and .endc. These commands are executed immediately after the circuit is loaded, so a
control line of ac ... works the same as the corresponding .ac card. The first line in
any input file is considered a title line and not parsed but kept as the name of the circuit.
Thus, a ngspice command script in infile must begin with a blank line and then with a
.control line. Also, any line starting with the string ‘*#’ is considered as a control line
(.control and .endc is placed around this line automatically.). The exception to these
rules are the files spinit (16.5) and .spiceinit (16.6).

17.5. COMMANDS 383

For ngutmeg: reads commands from the file infile. Lines beginning with the character
‘*x” are considered comments and are ignored.

The following search path is executed to find infile: current directory (OS dependent),
<prefix> /share/ngspice/scripts, env. variable NGSPICE_INPUT_DIR (if defined), see 16.7.
This sequence may be overridden by setting the internal sourcepath variable (see 17.7)
before calling source infile.

17.5.79 Spec: Create a frequency domain plot

General Form:

spec start_freq stop_freq step_freq vector [vector ...]

Calculates a new complex vector containing the Fourier transform of the input vector
(typically the linearized result of a transient analysis). The default behavior is to use
a Hanning window, but this can be changed by setting the variables specwindow and
specwindoworder appropriately.

Typical usage:

ngspice 13 -> linearize

ngspice 14 -> set specwindow = "blackman"
ngspice 15 -> spec 10 1000000 1000 v (out)
ngspice 16 -> plot mag(v(out))

Possible values for specwindow are none, hanning, cosine, rectangular, hamming, triangle,
bartlet, blackman, gaussianand flattop. In the case of a Gaussian window specwindoworder
is a number specifying its order. For a list of window functions see 17.5.28.

17.5.80 Status®: Display breakpoint information

General Form:

status

Display all of the saved nodes and parameters, traces and breakpoints currently in effect.

17.5.81 Step*: Run a fixed number of time-points

General Form:

step [number]

Iterate number times, or once, and then stop.

384 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.82 Stop*: Set a breakpoint

General Form:

stop [after n] [when value cond value]

Set a breakpoint. The argument after n means stop after iteration number ‘n’;, and
the argument when value cond value means stop when the first value is in the given
relation with the second value, the possible relations being

’ Symbol ‘ Alias H Meaning ‘
= eq equal to
<> ne not equal
> gt greater than
< It less than
>= ge greater than or equal to
<= le less than or equal to

Symbol or alias may be used alternatively. All stop commands have to be given in the
control flow before the run command. The values above may be node names in the
running circuit, or real values. If more than one condition is given, e.g.

stop after 4 when v(1) > 4 when v(2) < 2

the conjunction of the conditions is implied. If the condition is met, the simulation and
control flow are interrupted, and ngspice waits for user input.

In a transient simulation the ‘=" or eq will only work with vector time in commands like
stop when time = 200n.

Internally, a breakpoint will be set at the time requested. Multiple breakpoints may
be set. If the first stop condition is met, the simulation is interrupted, the commands
following run or tran (e.g. alter or altermod) are executed, then the simulation may
continue at the first resume command. The next breakpoint requires another resume to
continue automatically. Otherwise the simulation stops and ngspice waits for user input.

If you try to stop at
stop when V(1) eq 1

(or similar) during a transient simulation, you probably will miss this point, because it is
not very likely that at any time step the vector v(1) will have the exact value of 1. Then
ngspice simply will not stop.

17.5.83 Strcmp: Compare two strings

General Form:

strcmp _flag $stringl "string2"

The command compares two strings, either given by a variable (stringl) or as a string
in quotes (‘string2’). _ flag is set as an output variable to ’0’, if both strings are equal.

17.5. COMMANDS 385

A value greater than zero indicates that the first character that does not match has a
greater value in strl than in str2; and a value less than zero indicates the opposite (like
the C stremp function).

17.5.84 Sysinfo*: Print system information

General Form:

sysinfo

The command prints system information useful for sending bug report to developers.
Information consists of

o Name of the operating system,

o CPU type,

o Number of physical processors,

e Number of logical processors,

o Total amount of DRAM available,
o« DRAM currently available.

The example below shows the use of this command.

ngspice 1 -> sysinfo

0S: CYGWIN_NT-5.1 1.5.25(0.156/4/2) 2008-06-12 19:34
CPU: Intel(R) Pentium(R) 4 CPU 3.40GHz

Logical processors: 2

Total DRAM available = 1535.480469 MB.

DRAM currently available = 984.683594 MB.

ngspice 2 ->

This command has been tested under Windows OS and Linux. It may not be available
in your operating system environment.

17.5.85 Tf*: Run a Transfer Function analysis
General Form:

tf output_node input_source
The tf command performs a transfer function analysis, returning:

o the transfer function (output/input),

e output resistance,

386 CHAPTER 17. INTERACTIVE INTERPRETER

« and input resistance

between the given output node and the given input source. The analysis assumes a
small-signal DC (slowly varying) input. The following example file

Example input file:

* Tf test circuit

Vs 1 0 dc 5
ri 1 2 100
r2 2 3 50
r3 3 0 150
r4d 2 0 200
.control

tf v(3,5) vs

print all

.endc

.end

will yield the following output:
transfer_function = 3.750000e-001
output_impedance_at_v(3,5) = 6.662500e+001
vs#input_impedance = 2.000000e+002

17.5.86 Trace*: Trace nodes

General Form:

trace [node ...]

For every step of an analysis, the value of the node is printed. Several traces may be
active at once. Tracing is not applicable for all analyses. To remove a trace, use the
delete (17.5.18) command.

17.5.87 Tran*: Perform a transient analysis

General Form:

tran Tstep Tstop [Tstart [Tmax]] [UIC]

Perform a transient analysis. See Chapt. 15.3.9 of this manual for more details.

An interactive transient analysis may be interrupted by issuing a ctrl-c (control-C) com-
mand. The analysis then can be resumed by the resume command (17.5.59). Several
options may be set to control the simulation (15.1.4).

17.5. COMMANDS 387

17.5.88 Transpose: Swap the elements in a multi-dimensional
data set

General Form:

transpose vector vector

This command transposes a multidimensional vector. No analysis in ngspice produces
multidimensional vectors, although the DC transfer curve may be run with two varying
sources. You must use the reshape command to reform the one-dimensional vectors into
two dimensional vectors. In addition, the default scale is incorrect for plotting. You must
plot versus the vector corresponding to the second source, but you must also refer only
to the first segment of this second source vector. For example (circuit to produce the
transfer characteristic of a MOS transistor):

How to produce the transfer characteristic of a MOS transistor:

ngspice > dc vgg 0 5 1 vdd 0 5 1
ngspice > plot i(vdd)

ngspice > reshape all [6,6]

ngspice > transpose i(vdd) v(drain)
ngspice > plot i(vdd) vs v(drain) [0]

17.5.89 Unalias: Retract an alias

General Form:

unalias [word ...]

Removes any aliases present for the words.

17.5.90 Undefine: Retract a definition

General Form:

undefine [function ...]
undefine *

Definitions for the named user-defined functions are deleted. If * is given, all user-defined
functions are deleted.

17.5.91 Unlet: Delete the specified vector(s)

General Form:

unlet [vector ...]

388 CHAPTER 17. INTERACTIVE INTERPRETER

Delete the specified vector(s). See also let (17.5.38).

17.5.92 Unset: Clear a variable

General Form:

unset [word ...]
unset x*

Clear the value of the specified variable(s) (word). If * is specified, all variables are
cleared.

17.5.93 Version: Print the version of ngspice

General Form:
version [-s | -f | <version id>]

Print out the version of ngspice that is running, if invoked without argument or with -s
or -f. If the argument is a <version id> (any string different from -s or -f is considered
a <version id>), the command checks to make sure that the arguments match the
current version of ngspice. (This is mainly used as a Command: line in rawfiles.)

Options description:

o No option: The output of the command is the message you can see when running
ngspice from the command line, no more no less.

o -s(hort): A shorter version of the message you see when calling ngspice from the
command line.

o -f(ull): You may want to use this option if you want to know what extensions are
included into the simulator and what compilation switches are active. A list of
compilation options and included extensions is appended to the normal (not short)
message. May be useful when sending bug reports.

The following example shows what the command returns in some situations:

17.5. COMMANDS 389

Use of the version command:

ngspice 10 -> version

ok ok ok 5k %k

**x ngspice-24 : Circuit level simulation program
*x The U. C. Berkeley CAD Group

x*x Copyright 1985-1994, Regents of the University of California.

** Please get your ngspice manual from
http://ngspice.sourceforge.net/docs.html

x Please file your bug-reports at
http://ngspice.sourceforge.net/bugrep.html

*x Creation Date: Jan 1 2011 13:36:34

k ok 5k >k >k %

ngspice 2 ->

ngspice 11 -> version 14

Note: rawfile is version 14 (current version is 24)

ngspice 12 -> version 24

ngspice 13 ->

Note for developers: The option listing returned when version is called with
the -f flag is built at compile time using #ifdef blocks. When new compile
switches are added, if you want them to appear on the list, you have to modify
the code in misccoms. c.

17.5.94 Where*: Identify troublesome node or device

General Form:

where

When performing a transient or operating point analysis, the name of the last node or
device to cause non-convergence is saved. The where command prints out this information
so that you can examine the circuit and either correct the problem or generate a bug
report. You may do this either in the middle of a run or after the simulator has given
up on the analysis. For transient simulation, the iplot command can be used to monitor
the progress of the analysis. When the analysis slows down severely or hangs, interrupt
the simulator (with control-C) and issue the where command. Note that only one node
or device is printed; there may be problems with more than one node.

390 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.95 Wrdata: Write data to a file (simple table)

General Form:

<set wr_singlescale>
<set wr_vecnames>
<option numdgt=7>

wrdata [file] [vecs]

Writes out the vectors to file.

This is a very simple printout of data in array form. Variables are written in pairs: scale
vector, value vector. If variable is complex, a triple is printed (scale, real, imag). If more
than one vector is given, the third column again is the default scale, the fourth the data
of the second vector. The default format is ASCII. All vectors have to stem from the
same plot, otherwise a segfault may occur. Setting wr_singlescale as variable, the scale
vector will be printed only once, if scale vectors are of the same length (you have to take
care of that yourself). Setting wr_vecnames as variable, scale and data vector names are
printed on the first row. The number of significant digits is set with option numdgt.

output example from two vectors:

0.000000e+00 -1.845890e-06 0.000000e+00

0.000000e+00

7.629471e+06 4.243518e-06 .629471e+06 -4.930171e-06
1.525894e+07 -5.794628e-06 .525894e+07

4.769020e-06

2.288841e+07 5.086875e-06 .288841e+07 -3.670687e-06
3.051788e+07 -3.683623e-06 .051788e+07

1.754215e-06

3.814735e+07 1.330798e-06 .814735e+07 -1.091843e-06
4.577682e+07 -3.804620e-07 .B77682e+07

2.274678e-06

5.340630e+07 9.047444e-07 .340630e+07 -3.815083e-06
6.103577e+07 -2.792511e-06 .103577e+07

4.766727e-06

6.866524e+07 5.657498e-06 .866524e+07 -2.397679e-06

If variable appendwrite is set, the data may be added to an existing file.

17.5.96 Write: Write data to a file (Spice3f5 format)

General Form:

write [file] [exprs]

Writes out the expressions to file.

17.6. CONTROL STRUCTURES 391

First vectors are grouped together by plots, and written out as such (i.e. if the expression
list contained three vectors from one plot and two from another, then two plots are
written, one with three vectors and one with two). Additionally, if the scale for a vector
isn’t present it is automatically written out as well.

The default format is a compact binary, but this can be changed to ASCII with the set
filetype=ascii command. The default file name is either rawspice.raw or the argument
of the optional -r flag on the command line, and the default expression list is all.

If variable appendwrite is set, the data may be added to an existing file.

17.5.97 Wrs2p: Write scattering parameters to file (Touchstone®
format)

General Form:

wrs2p [file]

Writes out the s-parameters of a two-port to file.

In the active plot the following is required: vectors frequency, S11 S12 S21 S22, all
having the same length and complex values (as a result of an ac analysis), and vector
Rbase. For details how to generate these data see Chapt. 17.9.

The file format is Touchstone® Version 1, ASCII, frequency in Hz, real and imaginary
parts of Snn versus frequency.

The default file name is s-param.s2p.

output example:

!12-port S-parameter file

ITitle: test for scattering parameters

IGenerated by ngspice at Sat 0Oct 16 13:51:18 2010

Hz S RI R 50

lfreq ReS11 ImS11 ReS21
2.500000e+06 -1.358762e-03 -1.726349e-02 9.966563e-01
5.000000e+06 -5.439573e-03 -3.397117e-02 9.867253e-01

17.6 Control Structures

17.6.1 While - End

General Form:

while condition
statement

end

392 CHAPTER 17. INTERACTIVE INTERPRETER

While condition, an arbitrary algebraic expression, is true, execute the statements.

17.6.2 Repeat - End

General Form:

repeat [number]
statement

end

Execute the statements number times, or forever if no argument is given.

17.6.3 Dowhile - End

General Form:

dowhile condition
statement

end

The same as while, except that the condition is tested after the statements are executed.

17.6.4 Foreach - End

General Form:

foreach var wvalue
statement

end

The statements are executed once for each of the values, each time with the variable var
set to the current one. (var can be accessed by the $var notation - see below).

17.6. CONTROL STRUCTURES 393

17.6.5 1If - Then - Else

General Form:

if condition
statement

else
statement

end

If the condition is non-zero then the first set of statements are executed, otherwise the
second set. The else and the second set of statements may be omitted.

17.6.6 Label

General Form:

label word

If a statement of the form goto word is encountered, control is transferred to this point,
otherwise this is a no-op.

17.6.7 Goto

General Form:

goto word

If a statement of the form label word is present in the block or an enclosing block,
control is transferred there. Note that if the label is at the top level, it must be before
the goto statement (i.e, a forward goto may occur only within a block). A block to just
include goto on the top level may look like the following example.

Example noop block to include forward goto on top level:
if (1)
goto gohere

label gohere
end

394 CHAPTER 17. INTERACTIVE INTERPRETER

17.6.8 Continue

General Form:

continue [n]

If there is a while, dowhile, or foreach block n levels of loops above the enclosing this
statement, control passes to the test controlling that loop, or in the case of foreach, the
next value for that loop is taken. If n is not specified, it is assumed to be 1 and acts
on the loop immediately enclosing the continue command. If the value of 0 is given, it
treated as a no-op.

17.6.9 Break

General Form:

break [n]

If there is a while, dowhile, or foreach block n levels of loops above the enclosing this
statement, control passes out of the block. If n is not specified, it is assumed to be 1 and
acts on the loop immediately enclosing the break command. If the value of 0 is given, it
treated as a no-op.

Of course, control structures may be nested. When a block is entered and the input is the
terminal, the prompt becomes a number of >’s corresponding to the number of blocks the
user has entered. The current control structures may be examined with the debugging
command cdump (see 17.5.10).

17.7 Internally predefined variables

The operation of both ngutmeg and ngspice may be affected by setting variables with the
set command (17.5.65). In addition to the variables mentioned below, the set command
also affects the behavior of the simulator via the options previously described under the
section on .0PTIONS (15.1). You also may define new variables or alter existing variables
inside .controlendc for later use in a user-defined script (see Chapt. 17.8).

The following list is in alphabetical order. All of these variables are acknowledged by
ngspice. Frontend variables (e.g. on circuits and simulation) are not defined in ngnutmeg.
The predefined variables that may be set or altered by the set command are

appendwrite Append to the file when a write command is issued, if one already exists.

askquit Check to make sure that there are circuits suspended or plots unsaved. ngspice
warns the user when he tries to quit if this is the case.brief If set to FALSE, the
netlist will be printed.

batchmode Set by ngspice if run with the -b command line parameter. May be used in
input files to suppress plotting if ngspice runs in batch mode.

17.7. INTERNALLY PREDEFINED VARIABLES 395

colorN These variables determine the colors used during plotting. Color values may be
entered as RGB values from 0 to 255 (hex or decimal) or stating a color name.
The identification number N may be an integer between 0 and 22. ColorO0 is the
background, colorl is the grid and text color, and color ids from 2 through 22
are used for graphs (vectors) plotted. Hex color coding is done according to set
colorN=rgb:r/g/b, where r, g, and b may range from 00 to FF each. For example
green is selected by set color3=rgb:00/FF/00. Decimal coding is available as set
colorN=rgbd:rd/gd/bd, where rd, gd, and bd may range from 0 to 255. If X11 is
being run (Linux, macOS, Cygwin), the value of the color variables may be any of
the standard X-Server color names, which may be found in file /usr/1ib/rgb. txt.
ngspice GUI for Windows supports color names according to the Naming Common
Colors project. Details are to be found in file wincolor.h. An example isset
color3=blue. If no color id is set, then a predefined set of colors is applied auto-
matically.

controlswait (only available with shared ngspice, chapt. 19.4.1.4) If the simulation is
started with the background thread (command bg_run), the .control section com-
mands are executed immediately after bg_run has been given, i.e. typically before
the simulation has finished. This often is not very useful because you want to evalu-
ate the simulation results. If controlswait is set in .spiceinit or spice.rc, the command
execution is delayed until the background thread has returned (aka the simulation
has finished). If set controlswait is given inside of the .control section, only the
commands following this statement are delayed.

cpdebug Print control debugging information.

curplot (read only) Returns <type><mno.> of the current plot. Type is one of tran, ac,
op, sp, dc¢, unknown, no. is a number, sequentially set internally. This information
is used to uniquely identify each plot.

curplotdate Sets the date of the current plot.

curplotname Sets the name of the current plot.

curplottitle Sets the title (a short description) of the current plot.
debug If set then a lot of debugging information is printed.

device The name (/dev/tty??) of the graphics device. If this variable isn’t set then the
user’s terminal is used. To do plotting on another monitor you probably have to set
both the device and term variables. (If device is set to the name of a file, nutmeg
dumps the graphics control codes into this file — this is useful for saving plots.)

diff_abstol The relative tolerance used by the diff command (default is le-12).
diff_reltol The relative tolerance used by the diff command (default is 0.001).

diff_vntol The absolute tolerance for voltage type vectors used by the diff command
(default is 1le-6).

echo Print out each command before it is executed.

editor The editor to use for the edit command.

https://www.codeproject.com/Articles/1276/Naming-Common-Colors
https://www.codeproject.com/Articles/1276/Naming-Common-Colors

396 CHAPTER 17. INTERACTIVE INTERPRETER

filetype This can be either ascii or binary, and determines the format of the raw
file (compact binary or text editor readable ascii). The default is binary. CIDER
output (30.14) may be binary or ascii as well.

fourgridsize How many points to use for interpolating into when doing Fourier analysis.

gridsize If this variable is set to an integer, this number is used as the number of equally
spaced points to use for the Y axis when plotting. Otherwise the current scale is
used (which may not have equally spaced points). If the current scale isn’t strictly
monotonic, then this option has no effect.

gridstyle Sets the grid during plotting with the plot command. Will be overridden by
direct entry of gridstyle in the plot command. A linear grid is standard for both
x and y axis. Allowed values are lingrid loglog xlog ylog smith smithgrid
polar nogrid.

hcopydev If this is set, when the hardcopy command is run the resulting file is automat-
ically printed on the printer named hcopydev with the command 1pr -Phcopydev
-g file.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is
device dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype This variable specifies the type of the printer output to use in the hardcopy
command. If hcopydevtype is not set, Postscript format is assumed. plot (5)
is recognized as an alternative output format. When used in conjunction with
hcopydev, hcopydevtype should specify a format supported by the printer.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and
10).

hcopywidth Sets width of the hardcopy plot.
hcopyheight Sets height of the hardcopy plot.

hcopypscolor Sets the color of the hardcopy output. If not set, black & white plotting
is assumed with different linestyles for each output vector. A valid color integer
value yields a colored plot background (0: black 1: white, others see below). and
colored solid lines. This is valid for Postscript only.

hcopypstxcolor This variable sets the color of the text in the Postscript hardcopy out-
put. If not set, black on white background is assumed, else it will be white on black
background. Valid colors are 0: black 1: white 2: red 3: blue 4: orange 5: green 6:
pink 7: brown 8: khaki 9: plum 10: orchid 11: violet 12: maroon 13: turquoise 14:
sienna 15: coral 16: cyan 17: magenta 18: gray (for smith grid) 19: gray (for smith
grid) 20: gray (for normal grid).

height The length of the page for asciiplot and print col.

history The number of events to save in the history list.

17.7. INTERNALLY PREDEFINED VARIABLES 397

inputdir The directory path of the last input file. It may be used to direct outputs
into a directory relative to the input (even the into the same directory) by e.g. the
command write $inputdir/outfile.raw vecl vec2.

interactive If interactive is set, numparam error handling may be done manually
with user input from the console. If not, ngspice will exit upon a numparam error.

lprplot5 This is a printf (3s) style format string used to specify the command to use
for sending plot(5)-style plots to a printer or plotter. The first parameter supplied
is the printer name, the second parameter is a file name containing the plot. Both
parameters are strings.

lprps This is a printf (3s) style format string used to specify the command to use for
sending Postscript plots to a printer or plotter. The first parameter supplied is
the printer name, the second parameter is the file name containing the plot. Both
parameters are strings.

modelcard The name of the model card (normally .MODEL)

moremode If moremode is set, whenever a large amount of data is being printed to the
screen (e.g, the print or asciiplot commands), the output is stopped every screen-
ful and continues when a carriage return is typed. If moremode is unset, then data
scrolls off the screen without pausing.

nfreqs The number of frequencies to compute in the Fourier command. (Defaults to 10.)

ngbehavior Sets the compatibility mode of ngspice. Default value is ’all’. To be set
in spinit (16.5) or .spiceinit (16.6). A value of >all’ improves compatibility with
commercial simulators. Full compatibility is however not the intention of ngspice!
The values ’ps’, ’psa’, ’1t’, ’1ta’, ’hs’ and ’spice3’ are available. See Chapt.
16.14.

ngdebug enables several debugging printouts (see 16.16).
ng_nomodcheck Suppresses any model parameter check, if set.

no_auto_gnd Setting this boolean variable by set no_auto_gnd in spinit or .spiceinit,
ngspice will refrain from replacing all nodes named gnd by node 0. In using this
setting, you will have to take care of proper zeroing appropriate ground nodes. If
you fail to do so, ngspice may crash, or deliver wrong results.

nobjthack BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit
expansion routines to decide what to rename. If the fourth parameter has been
declared as a model name, then it is assumed that there are 3 nodes, otherwise it
is considered a node. To disable this, you can set the variable nobjthack and force
BJTs to have 4 nodes (for the purposes of subcircuit expansion, at least).

nobreak Don’t have asciiplot and print col break between pages.
noasciiplotvalue Don’t print the first vector plotted to the left when doing an asciiplot.

nobjthack Assume that BJTs have 4 nodes.

398 CHAPTER 17. INTERACTIVE INTERPRETER

noclobber Don’t overwrite existing files when doing 10 redirection.
noglob Don’t expand the global characters ‘*’, ‘7’ ‘[’, and ‘]’. This is the default.
nolegend Don’t plot the legend, when using the plot command..

nonomatch If noglob is unset and a global expression cannot be matched, use the global
characters literally instead of complaining.

noparse Don’t attempt to parse input files when they are read in (useful for debugging).
Of course, they cannot be run if they are not parsed.

noprintscale Don’t print the scale in the leftmost column when a print col command
is given.

nosavecurrents If set by 'set nosavecurrents’ and followed by 'reset’, the setting of
internal current vectors (.options savecurrents) is suppressed. This is useful in
ac simulation which does not support ‘options savecurrents’ and you have a mix
of several simulations in a single script.

nosort Don’t let display sort the variable names.

nostepsizelimit The maximum step size during transient simulation is per default lim-
ited to tstep given by .tran tstep tstop <tstart <tmax>> (15.3.9, 17.5.87). It may be
overridden and set to a value of (tstop - tstart) /50 by adding ’set nostepsizelimit’
to .spiceinit. Both may be overriden by setting tmax on the .tran line.

nosubckt Don’t expand subcircuits.
notrnoise Switch off the transient noise sources (Chapt. 4.1.7).

nounits Plotting of the units token for the x and y axes of a graph is suppressed. Units
may be added manually to the y and x labels for SI conformity.

numdgt The number of digits to use when printing tables of data (print col). The de-
fault precision is 6 digits. On the PC, approximately 16 decimal digits are available
using double precision, so p should not be more than 16. If the number is negative,
one fewer digit is printed to ensure constant widths in tables.

num_threads The number of of threads to be used if OpenMP (see Chapt. 16.10) is
selected. The default value is 2.

oscompiled is set during ngspice compilation and returns a number corresponding to
the operating environment used during compilation. 0 Other, 1 MINGW for MS
Windows, 2 Cygwin for MS Windows, 3 FreeBSD, 4 OpenBSD, 5 Solaris, 6 Linux,
7 macOS, 8 Visual Studio for MS Windows .

plainlet Command let (17.5.38) will executed without evaluating any expression in its
command line. This is useful if characters like ’/” are part of the vector names, e.g.
as issued by KiCad. Setting plainlet may be used to rename a vector including
such math characters into a vector using only standard characters. Then standard
plot, print, and write commands may be applied to this renamed vector.

17.7. INTERNALLY PREDEFINED VARIABLES 399

plainplot Command plot (17.5.49) will executed without evaluating any expression in
its command line. This is useful if characters like ’/” are part of the vector names.

plainwrite Command write (17.5.96) will executed without evaluating any expression
in its command line. This is useful if characters like ’/” are part of the vector names.

plotstyle This should be one of 1linplot, combplot, or pointplot. linplot, the
default, causes points to be plotted as parts of connected lines. combplot causes a
comb plot to be done. It plots vectors by drawing a vertical line from each point
to the X-axis, as opposed to joining the points. pointplot causes each point to be
plotted separately.

pointchars Set a string as a list of characters to be used as points in a point plot.
Standard is ‘ox*+#abcdefhgijklmnpqrstuvwyz’. Some characters are forbidden.

polydegree The degree of the polynomial that the plot command should fit to the data.
If polydegree is N, then ngspice fits a degree N polynomial to every set of N points
and draws 10 intermediate points in between each end point. If the points aren’t
monotonic, then ngspice tries to rotate the curve and reduce the degree until a fit
is achieved.

polysteps The number of points to interpolate between every pair of points available
when doing curve fitting. The default is 10.

program The name of the current program (argv|[0]).

prompt The prompt, with the character ‘!’ replaced by the current event number. Sin-
gle quotes > ’ are required around the specified string unless you really want it
expanded.

rawfile The default name for created rawfiles.
remote_shell Overrides the name used for generating rspice runs (default is rsh).
renumber Renumber input lines when an input file has .includes.

rndseed Seed value for random number generator (used by sgauss, sunif, and rnd
functions). It is set by the option command 'option seed=val|random’

rhost The machine to use for remote ngspice runs, instead of the default one (see the
description of the rspice command, below).

rprogram The name of the remote program to use in the rspice command.

sharedmode Variable is set when ngspice runs in its shared mode (from ngspice.dll or
ngspice_xx.so). May be used in universal input files to suppress plotting because a
graphics interface is lacking.

sim_status will bet set to 0 when the simulation starts. If there is an error and the
simulation fails with ’xx simulation(s) aborted’, then sim_status is set to 1. The
variable can be used in scripted loops within a transient simulation to allow special
handling e.g. in case of non-convergence.

400 CHAPTER 17. INTERACTIVE INTERPRETER

sourcepath A list of the directories to search when a source command is given. The de-
fault is the current directory and the standard ngspice library (/usr/local/lib/ngspice,
or whatever LIBPATH is #defined to in the ngspice source). The command
set sourcepath = (e:/ D:/ . «c:/spice/examples)
will overwrite the default. The search sequence now is: current directory, e:/, d:/,
current directory (again due to .), c:/spice/examples. 'Current directory’ is depend-
ing on the OS. The command
set sourcepath = (D:/mypath/input $sourcepath)
will add another path entry in front of the already existing list of paths. This feature
may be used with shared ngspice (19) to send a input path to code models which
require file input, like d_source. Only the first entry in the sourcepath list is sent
to the code models, however.

specwindow Windowing for commands spec (17.5.79) or fft (17.5.28). May be one of
the following: bartlet blackman cosine gaussian hamming hanning none rectangular
triangle.

specwindoworder Integer value 2 - 8 (default 2), used by commands spec or fft.
spicepath The program to use for the aspice command. The default is /cad/bin/spice.

sqrnoise If set, noise data outputs will be given as V?/Hz or A?/Hz, otherwise as the
usual V/y/Hz or A/\/Hz.

strict_errorhandling If set by the user, an error detected during circuit parsing will
immediately lead ngspice to exit with exit code 1 (see 18.5). May be set in files
spinit (16.5) or .spiceinit (16.6) only.

subend The card to end subcircuits (normally .ends).

subinvoke The prefix to invoke subcircuits (normally X).

substart The card to begin subcircuits (normally .subckt).

term The mfb name of the current terminal.

ticchar A character applied as a tic mark (replaces the default x’).

ticmarks An integer value n, every n data points a tic (default: a small 'x’) will be set
on your graph.

ticlist A list of integers, e.g. (4 14 24), selects data points to set tics (small 'x’) on
your graph.

units If this is degrees, then all the trig functions will use degrees instead of radians.

unixcom If a command isn’t defined, try to execute it as a UNIX command. Setting this
option has the effect of giving a rehash command, below. This is useful for people
who want to use ngspice as a login shell.

wfont Set the font for the graphics plot in MS Windows. Typical fonts are courier,
times, arial and all others found on your machine. Default is courier.

wfont_size The size of the windows font. The default depends on system settings.

17.8. SCRIPTS 401

width The width of the page for asciiplot and print col (see also 15.6.7).
win_console is set when ngspice runs in a console under Windows.

wr_singlescale Command wrdata: The scale vector will be printed only once, if all
scale vectors are of the same length.

wr_vecnames Command wrdata: Scale and data vector names are printed on the first
row.

x11lineararcs Some X11 implementations have poor arc drawing. If you set this option,
ngspice will plot using an approximation to the curve using straight lines.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS
Windows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot
and Postscript.

xfont Set the font for text (x and y labels, axis values) in the graphics plot in X11
(Linux, Cygwin, macOS etc.). The command fc-list | cut -f2 -d: | sort
-u | less -r lists the font names that are installed on the computer and are
suited for this variable. Use xfont with the setcs command to keep lower case and
upper case characters, e.g. in setcs xfont=’Noto Sans CJK JP’. The'Noto Sans’
font family is very well suited, covering Western and Asian fonts. Also valid for
gnuplot and Postscript.

xtrtol Set trtol, e.g. to 7, to avoid the default speed reduction (accuracy increase)
for XSPICE (see 16.9). Be aware of potential precision degradation or convergence
issues using this option.

17.8 Scripts

Expressions, functions, constants, commands, variables, vectors, and control structures
may be assembled into scripts within a .controlendc section of the input file. The
script allows automation of any ngspice task: simulations to perform, output data to
analyze, repeat simulations with modified parameters, assemble output plot vectors. The
ngspice scripting language is not very powerful, but well integrated into the simulation
flow.

The ngspice script input file contains the usual circuit netlist, modelcards, and the actual
script, enclosed in a .control .. .endc section. Ngspice is started in interactive mode
with the input file on the command line (or sourced later with the source command).
After reading the input file, the command sequence is immediately processed. Variables
or vectors set by previous commands may be referenced by the commands following them.
Data can be stored, plotted or grouped into new vectors for either plotting or other means
of data evaluation.

The input file may contain only the .control .. .endc section. To notify ngspice about
this (not mandatory), the script may start with *ng_script in the first line.

https://www.google.com/get/noto/

402 CHAPTER 17. INTERACTIVE INTERPRETER

17.8.1 Variables

Variables are defined and initialized with the set command (17.5). set output=10 defines
the variable output and sets it to the number 10. Predefined variables, which are used
inside ngspice for specific purposes, are listed in Chapt. 17.7. Variables are accessible
globally. The values of variables may be used in commands by writing $varname where
the value of the variable is to appear, e.g. $output. The special variable $$ refers to the
process ID of the program. With $< a line of input is read from the terminal. If a variable
is assigned with $&word, then word must be a vector (see below), and word’s numeric
value is taken to be the new value of the variable. If foo is a valid variable, and is of
type list, then the expression $foo[low-high] expands to a range of elements. Either
the upper or lower index may be left out, and in addition to slicing also reversing of a
list is possible through $foo[len-0] (1len is the length of the list, the first valid index is
always 1). Furthermore, the notation $?foo evaluates to 1 if the variable foo is defined,
0 otherwise, and $#foo evaluates to the number of elements in foo if it is a list, 1 if it is
a number or string, and 0 if it is a Boolean variable.

17.8.2 Vectors

Ngspice data is in the form of vectors: time, voltage, etc. Each vector has a type, and
vectors can be operated on and combined algebraically in ways consistent with their types.
Vectors are normally created as a result of a transient or dc simulation. They are also
established when a data file is read in (see the load command 17.5.41), or they are created
with the let command 17.5.38 inside a script. If a variable x is assigned something of the
form $&word, then word has to be a vector, and the numeric value of word is transferred
into the variable x.

17.8.3 Assessing vectors in subcircuits

Node voltages and branch currents from within a subcircuit may be read with a special
syntax. After circuit parsing, subcircuits are expanded, their names have become part of
each node name.

17.8. SCRIPTS 403

Input file example with nested subcircuits:

* test node names from subcircuits
Xsubl a b subl

.subckt subl nll nil12
Xsub2 nl1l1l nl12 sub2
R11 n11 intl1 1k

R12 n12 intl 1k
.ends

.subckt sub2 n21 n22
R21 n21 int2 1k

R22 n22 int2 1k
.ends

.end

Subcircuit instance Xsubl calls subcircuit subl which contains a subcircuit instance
Xsub2 calling sub2 which contains node int2.

Internal circuit resulting from subcircuit expansion:

.xsubl.xsub2.r21 a xsubl.xsub2.int2 1k
.xsubl.xsub2.r22 b xsubl.xsub2.int2 1k
.xsubl.r11 a xsubl.intl 1k
.xsubl.r12 b xsubl.intl 1k

R R R R

After expansion the subcircuits have disappeared. We now have extended node (aka
vector) names like xsubl.intl or xsubl.xsub2.int2. The top level subcircuit call name
is followed by node name, separated by a dot. Or the top level subcircuit call name
is followed second level subciruit call name, then followed by node name, each again
separated by a dot. You may now assess the node int2 values in a script by

print v(xsubl.xsub2.int?2)

Also the device instances have got their subcircuit information added to their names in
a similar way. In addition the type identifier letter (e.g. R for resistor) has been put in
front. So the resistor instances now are called r.xsubl.r11 or r.xsubl.xsub2.r22.

17.8.4 Commands

Commands have been described in Chapt. 17.5.

17.8.5 control structures

Control structures have been described in Chapt. 17.6. Some simple examples will be
given below.

404

CHAPTER 17. INTERACTIVE INTERPRETER

Control structure examples:

Test sequences for ngspice control structures

*vectors are used (except foreach)
*start in interactive mode

.control

* test sequence for while, dowhile
let loop = O
echo
echo enter loop with "$&loop"
dowhile loop < 3

echo within dowhile loop "$&loop"

let loop = loop + 1
end
echo after dowhile loop "$&loop"
echo
let loop = O
while loop < 3
echo within while loop "$&loop"
let loop = loop + 1
end
echo after while loop "$&loop"
let loop = 3
echo
echo enter loop with "$&loop"
dowhile loop < 3

echo within dowhile loop "$&loop"

$ output expected
let loop = loop + 1
end
echo after dowhile loop "$&loop"
echo
let loop = 3
while loop < 3
echo within while loop "$&loop"
$ no output expected
let loop = loop + 1
end
echo after while loop "$&loop"

17.8. SCRIPTS 405

Control structure examples (continued):

* test for while, repeat, if, break
let loop = 0
while loop < 4
let index = 0
repeat
let index = index + 1
if index > 4
break
end
end
echo index "$&index" loop "$&loop"
let loop = loop + 1
end

* test sequence for foreach

echo
foreach outvar 0 0.5 1 1.5
echo parameters: $outvar $ foreach parameters are variables,
$ not vectors!
end
* test for if ... else ... end
echo

let loop = O
let index = 1
dowhile loop < 10
let index = index * 2
if index < 128
echo "$&index" 1t 128

else
echo "$&index" ge 128
end
let loop = loop + 1
end

* simple test for label, goto
echo
let loop = O
label starthere
echo start "$&loop"
let loop = loop + 1
if loop < 3
goto starthere
end
echo end "$&loop"

406 CHAPTER 17. INTERACTIVE INTERPRETER

Control structure examples (continued):

* test for label, nested goto

echo
let loop = O
label startherel
echo start nested "$&loop"
let loop = loop + 1
if loop < 3

if loop < 3

goto startherel

end
end
echo end "$&loop"

* test for label, goto
echo
let index = 0
label starthere2
let loop = 0
echo We are at start with index "$&index" and loop "$&loop"
if index < 6
label inhere
let index = index + 1
if loop < 3
let loop = loop + 1
if index > 1
echo jump2
goto starthere?2
end
end
echo jump
goto inhere
end
echo We are at end with index "$&index" and loop "$&loop"

17.8. SCRIPTS 407

Control structure examples (continued):

* test goto in while loop
let loop = 0
if 1 $ outer loop to allow nested forward label ’endlabel’
while loop < 10
if loop > 5
echo jump
goto endlabel
end
let loop = loop + 1
end
echo before $ never reached
label endlabel
echo after "$&loop"
end

* test for using variables, simple test for label, goto
set loop = 0
label starthe
echo start $loop
let loop = $loop + 1 $ expression needs vector at lhs
set loop = "$&loop" $ convert vector contents to variable
if $loop < 3
goto starthe
end
echo end $loop
.endc

17.8.6 Example script ’spectrum’

A typical example script named spectrum is delivered with the ngspice distribution.
Even if it is made obsolete by the internal spec command (see 17.5.79), and especially by
the much faster fft command (see 17.5.28), it is a good example for getting acquainted
with the ngspice control (and post-processor) language.

As a suitable input for spectrum you may run a ring-oscillator, delivered with ngspice in
e.g. test/bsim3soi/ring51_41.cir. For an adequate resolution a simulation time of 1us is
needed. A small control script starts ngspice by loading the R.O. simulation data and
executing spectrum.

Small script to start ngspice, read the simulation data and start spectrum:

* test for script ’spectrum’

.control

load ringb1_41.out

spectrum 10MEG 2500MEG 1MEG v(out25) v(out50)
.endc

408 CHAPTER 17. INTERACTIVE INTERPRETER

17.8. SCRIPTS 409

17.8.7 Example script for random numbers

Generation and test of random numbers with Gaussian distribution
* agauss test in ngspice
* generate a sequence of gaussian distributed random numbers.
* test the distribution by sorting the numbers into
* a histogram (buckets)
.control
define agauss(nom, avar, sig) (nom + avar/sig * sgauss (0))
let mc_runs = 200
let run = 0
let no_buck = 8 $ number of buckets
let bucket = unitvec(no_buck)
$ each element contains 1
let delta = 3e-11 $ width of each bucket, depends

let lolimit
let hilimit

$ on avar and sig
1e-09 - 3xdelta
1e-09 + 3*xdelta

dowhile run < mc_runs

let val = agauss(l1e-09, 1e-10, 3) $ get the random number
if (val < lolimit)

let bucket [0] = bucket[0] + 1 $§ ’lowest’ bucket
end
let part =1
dowhile part < (no_buck - 1)

if ((val < (lolimit + partxdelta)) &
(val > (lolimit + (part-1)x*delta)))
let bucket[part] = bucket[part] + 1

break
end
let part = part + 1
end

if (val > hilimit)

* ’highest’ bucket

let bucket[no_buck - 1] = bucket[no_buck - 1] + 1
end
let run = run + 1

end

let part = 0
dowhile part < no_buck

let value = bucket[part] - 1
set value = "$&value"

* print the bucket’s contents
echo $value
let part = part + 1
end
.endc

.end

410 CHAPTER 17. INTERACTIVE INTERPRETER

17.8.8 Parameter sweep

While there is no direct command to sweep a device parameter during simulation, you
may use a script to emulate such behavior. The example input file contains of an resistive
divider with R1 and R2, where R1 is swept from a start to a stop value inside of the
control section, using the alter command (see 17.5.3).

Input file with parameter sweep

parameter sweep
* resistive divider, R1 swept from start_r to stop_r
VDD 1 0 DC 1

.control
let start_r = 1k
let stop_r = 10k
let delta_r = 1k
let r_act = start_r
* loop
while r_act le stop_r
alter rl r act
op
print v(2)
let r_act = r_act + delta r
end
.endc

.end

17.8.9 Output redirection

The console outputs delivered by commands like print (17.5.51), echo (17.5.23), or others
may be redirected into a text file. ’print vec > filename’ will generate a new file or
overwrite an existing file named ’filename’, ’echo text >> filename’ will append the
new data to the file ’filename’ Output redirection may be mixed with commands like
wrdata.

17.8. SCRIPTS 411

Input file with output redirection > and >>

**x MOSFET Gain Stage (AC):

** Benchmarking Implementation of BSIM4.0.0
** by Weidong Liu 5/16/2000.

*x output redirection into file

M1 3 2 0 0 N1 L=1u W=4u
Rsource 1 2 100k

Rload 3 wvdd 25k

Vdd vdd 0 1.8

Vin 1 0 1.2 ac 0.1

.control

ac dec 10 100 1000Meg

plot v(2) v(3)

let flen = length(frequency) $ length of the vector
let loopcounter = 0

echo output test > text.txt §$ start new file test.txt
* loop

while loopcounter 1t flen

let vout2 = v(2)[loopcounter] $ generate a single point
$ complex vector

let vout2re = real(vout2) $ generate a single point
$ real vector

let vout2im = imag(vout2) $ generate a single point
$ imaginary vector

let vout3 = v(3)[loopcounter] $ generate a single
$ point complex vector

let vout3re = real(vout3) $ generate a single point
$ real vector

let vout3im = imag(vout3) $ generate a single point
$ imaginary vector

let freq = frequency[loopcounter] $ generate a single point vecto

echo bbb "$&freq" "$&vout2re" "$&vout2im"

+ "$&vout3re" "$&vout3im" >> text.txt

$ append text and
$ data to file
$ (continued from line above)
let loopcounter = loopcounter + 1
end
.endc

.MODEL N1 NMOS LEVEL=14 VERSION=4.8.1 TNOM=27
.end

412 CHAPTER 17. INTERACTIVE INTERPRETER

17.9 Scattering parameters (S-parameters)

17.9.1 Intro

A command line script, available from the ngspice distribution at examples/control_structs/s-
param.cir, together with the command wrs2p (see Chapt. 17.5.97) allows calculating,
printing and plotting of the scattering parameters S11, S21, S12; and S22 of any two
port circuit at varying frequencies.

The printed output using wrs2p is a Touchstone® version 1 format file. The file follows
the format according to The Touchstone File Format Specification, Version 2.0, available
from here. An example is given as number 13 on page 15 of that specification.

17.9.2 S-parameter measurement basics
S-parameters allow a two-port description not just by permuting I, Uy, I, Us, but using

a superposition, leading to a power view of the port (We only look at two-ports here,
because multi-ports are not (yet?) implemented.).

You may start with the effective power, being negative or positive

P=u-i (17.3)

The value of P may be the difference of two real numbers, with K being another real
number.

ui=P=a>-b"=(a+b)(a—b)=(a+b) (KK ")(a—b)={K(a+b)}{K (a—b)}

(17.4)
Thus you get
Kl'u=a+b (17.5)
Ki=a—-10 (17.6)
and finally
B u+ K% (17.7)
a=— .
u— K%
p— 1 .
b 57 (17.8)

By introducing the reference resistance Zy := K2 > 0 we get finally the Heaviside trans-
formation

http://www.eda.org/ibis/touchstone_ver2.0/

17.9. SCATTERING PARAMETERS (S-PARAMETERS) 413

U+ Z()Z u — Z()Z
= , = 17.9
AV AV (17.9)
In case of our two-port we subject our variables to a Heaviside transformation
U, + Zolq U, — Zoly
- T == 17.10
STz, T vz (17.10)
Us + ZyI. Uy — Zyl.
_ 2t oy Uz 2ol (17.11)

NN N

The s-matrix for a two-port then is

by S$11 S12 ax
= 17.12
(bz> (321 322)(a2> ()

Two obtain s1; we have to set a; = 0. This is accomplished by loading the output port

exactly with the reference resistance Z,, which sinks a current I, = —Uy/Z; from the
port.
b
S1y = (—1) (17.13)
ay as=0
Uy — Zoly
S11 = ————— 17.14
YU+ 20, (17.14)

Loading the input port from an ac source U, via a resistor with resistance value Z,, we
obtain the relation

Us = ZoI, + Uy (17.15)

Entering this into 17.14, we get

20U, — Uy

17.16
o (17.16)

S11 =
For s9; we obtain similarly

b
So1 = (—2) (17.17)
ai a2=0

Uy —Zogl, 2U
U+ Zy, U,

Equations 17.16 and 17.18 now tell us how to measure s;; and s9;: Measure U; at the
input port, multiply by 2 using an E source, subtracting Uy, which for simplicity is set
to 1, and divide by Uy. At the same time measure U, at the output port, multiply by 2
and divide by Uj. Biasing and measuring is done by subcircuit S PARAM. To obtain sg9
and s1o, you have to exchange the input and output ports of your two-port and do the
same measurement again. This is achieved by switching resistors from low (1m£2) to high
(172) and thus switching the input and output ports.

(17.18)

521

414 CHAPTER 17. INTERACTIVE INTERPRETER

17.9.3 Usage

Copy and then edit s-param.cir. You will find this file in directory /examples/control_structs
of the ngspice distribution.

The reference resistance (often called characteristic impedance) for the measurements is
added as a parameter

.param Rbase=50

The bias voltages at the input and output ports of the circuit are set as parameters as
well:

.param Vbias_in=1 Vbias_out=2

Place your circuit at the appropriate place in the input file, e.g. replacing the existing
example circuits. The input port of your circuit has two nodes in, 0. The output port has
the two nodes out, 0. The bias voltages are connected to your circuit via the resistances
of value Rbase at the input and output respectively. This may be of importance for the
operating point calculations if your circuit draws a large dc current.

Now edit the ac commands (see 17.5.1) according to the circuit provided, e.g.
ac lin 100 2.5MEG 250MEG $ use for Tschebyschef

Be careful to keep both ac lines in the .controlendc section the same and only
change both in equal measure!

Select the plot commands (lin/log, or smithgrid) or the ’write to file’ commands
(write, wrdata, or wrs2p) according to your needs.

Run ngspice in interactive mode

ngspice s-param.cir

17.10 Using shell variables

You may use the shell command (17.5.72) to execute a command in the shell. Its return
value is printed at the ngspice prompt.

Example:

shell echo $HOME
/home/holger

The following is valid only if you are working with ngspice as a console app (Linux,
Cygwin). In interactive mode or from a .control section you may transfer the return of a
command from the shell into an ngspice variable by backquote or backtick substitution.
Any text between backquotes is replaced by the result of executing the text as a command
to the shell.

Example:

set myvar2=‘/bin/bash -c "echo $HOME"
echo $myvar2
/home/holger

17.11. MISCELLANEOUS 415

17.11 MISCELLANEOUS

C-shell type quoting with ’> and " may be used. Within single quotes, no further substi-
tution (like history substitution) is done, and within double quotes, the words are kept
together but further substitution is done.

History substitutions, similar to C-shell history substitutions, are also available - see
the C-shell manual page for all of the details. The characters ~, @{, and @} have the
same effects as they do in the C-Shell, i.e., home directory and alternative expansion. It
is possible to use the wildcard characters *; 7, [, and | also, but only if you unset noglob
first. This makes them rather useless for typing algebraic expressions, so you should set
noglob again after you are done with wildcard expansion. Note that the pattern [~abc]
matches all characters except a, b, and c.

If X is being used, the cursor may be positioned at any point on the screen when the
window is up and characters typed at the keyboard are added to the window at that
point. The window may then be sent to a printer using the xpr(1) program.

17.12 Bugs

When defining aliases like alias pdb plot db(!':1 - !:2) you must be careful to quote
the argument list substitutions in this manner. If you quote the whole argument it might
not work properly.

In a user-defined function, the arguments cannot be part of a name that uses the plot.vec
syntax. For example: define check(v(1)) cos(tranl.v(1)) does not work.

416 CHAPTER 17. INTERACTIVE INTERPRETER

Chapter 18

Ngspice User Interfaces

ngspice offers a variety of user interfaces. For an overview (several screen shots) please
have a look at the ngspice web page.

18.1 MS Windows Graphical User Interface

If compiled properly (e.g. using the —-with-wingui flag for ./configure under MINGW),
ngspice for Windows offers a simple graphical user interface. In fact this interface does
not offer much more for data input than a console would offer, e.g. command line inputs,
command history and program text output. First of all it applies the Windows API for
data plotting. If you run the sample input file given below, you will get an output as
shown in Fig. 18.1.

417

http://sourceforge.net/project/screenshots.php?group_id=38962

418 CHAPTER 18. NGSPICE USER INTERFACES

Input file:

**xxx*x Single NMOS Transistor For BSIM3V3.1
x*%**x* general purpose check (Id-Vd) x*x*x

*

**% circuit description **x

ml 2 1 3 0 n1 L=0.6u W=10.0u

.dc vds 0 3.5 0.05 vgs 0 3.5 0.5

*

.control

run

plot vss#branch

.endc

*

* UCB parameters BSIM3v3.2

.include ../Exam_BSIM3/Modelcards/modelcard.nmos
.include ../Exam_BSIM3/Modelcards/modelcard.pmos
%

.end

The GUI consists of an I/O port (lower window) and a graphics window, created by the
plot command.

18.1. MS WINDOWS GRAPHICAL USER INTERFACE 419

B del: **** nmos transistor bsim3 (id-vds) = - O x

vss#branch

300.0

EEEEXE
*#¥ ngspice—31+ ;| Circuit level simulation progran

*% The U. C. Berkeley CAD Group

*% Copyright 1985-1994, Regents of the University of California.

*% Please get your ngspice manual from http: ““ngspice.sourceforge. net-docs htnl
*#%¥ FPleaze file your bug-reports at http: s ngspice.szourceforge.net-bugrep. html
*##% Creation Date: Feb 22 2020 16:19:30

EEXENR
Circuit: *xx%* pmos transistor bsind (id-wvds) ===

Doing analysis at TEMP = 27 000000 and THOM = 27 . 000000

Ho. of Data Rows @ 246
ng=pice 1 -»

D:\Spice_general\ngspicelexamplesivarious\nmos_out_BSIM330.sp | - ready — Quit |

Figure 18.1: MS Windows GUI

The output window displays messages issued by ngspice. You may scroll the window to
get more of the text. The input box (white box) may be activated by a mouse click to
accept any of the valid ngspice commends. The lower left output bar displays the actual
input file. ngspice progress during setup and simulation is shown in the progress window
(--ready--). The Quit button allows interruption of ngspice. If ngspice is actively
simulating, due to using only a single thread, this interrupt has to wait until the window
is accessible from within ngspice, e.g. during an update of the progress window.

In the plot window there is the upper left button, which activated a drop down menu.
You may select to print the plot window shown (a very simple printer interface, to be
improved), set up any of the printers available on your computer, or issue a postscript file
of the actual plot window, either black&white or colored.

Instead of plotting with black background, you may set the background to any other color,
preferably to ‘white’ using the command shown below.

420 CHAPTER 18. NGSPICE USER INTERFACES

Input file modification for white background:

.control

run

* white background

set colorO=white

* black grid and text (only needed with X11, automatic with MS Win)
set colorl=black

* wider grid and plot lines

set xbrushwidth=2

plot vss#branch

.endc

M dc1: *****single nmos transistor for bsim3v3.1 general purpose check (id-vd) ***

mh vestbranch

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

v—zWESp w

Figure 18.2: Plotting with white background

18.2 MS Windows Console

If the --with-wingui flag for ./configure under MINGW is omitted (see 32.2.4) or con-
sole debug or console_ release is selected in the MS Visual Studio configuration manager,
then ngspice will compile without any internal graphical input or output capability. This
may be useful if you apply ngspice in a pipe inside the MSYS window, or use it being
called from another program, and just generating output files from a given input. The
plot (17.5.49) command will not work and leads to an error message.

Only on the ngspice console binary in MS Windows input/output redirection is possible,
if ngspice is called (e.g. within a MSY'S shell or from a shell script) like

18.3. LINUX 421

$ ngspice < input.

This feature is used in the new CMC model test suite (to be described elsewhere), thus
requires a console binary.

You still may generate graphics output plots or prints by gnuplot (17.5.31), if installed
properly (18.7), or by selecting a suitable printing option (18.6).

18.3 Linux

The standard user interface is a console for input and the X11 graphics system for output
with the interactive plot (17.5.49) command. If ngspice is compiled with the —without-x
flag for ./configure, a console application without graphical interface results. For more
sophisticated input user interfaces please have a look at Chapt. 18.8.

18.4 CygWin

The CygWin interface is similar to the Linux interface (18.3), i.e. console input and X11
graphics output. To avoid the warning of a missing graphical user interface, you have to
start the X11 window manager by issuing the commands

$ export DISPLAY=:0.0
$ xwin -multiwindow -clipboard &

inside of the CygWin window before starting ngspice.

18.5 Error handling

Error messages and error handling in ngspice have grown over the years, include a lot of
‘traditional” behavior and thus are not very systematic and consistent.

Error messages may occur with the token ‘Error:’. Often the errors are non-recoverable
and will lead to exiting ngspice with error code 1. Sometimes, however, you will get an
error message, but ngspice will continue, and may either bail out later because the error
has propagated into the simulation, sometimes ngspice will continue, deliver wrong results
and exit with error code 0 (no error detected!).

In addition ngspice may issue warning messages like ‘Warning: ... These should cover
recoverable errors only.

So there is still work to be done to define a consistent error messaging, recovery or exiting.
A first step is the user definable variable strict_errorhandling. This variable may be set in
files spinit (16.5) or .spiceinit (16.6) to immediately stop ngspice, after an error is detected
during parsing the circuit. An error message is sent, the ngspice exit code is 1. This
behavior deviates from traditional SPICE error handling and thus is introduced as an
option only.

XSPICE error messages are explained in Chapt. 29.

422 CHAPTER 18. NGSPICE USER INTERFACES

18.6 QOutput-to-file options

ngspice offers a large variety of writing simulation results into a file. This chapter will
give a short summary of the available options.

18.6.1 Graphics files
18.6.1.1 SVG

How to prepare a plot
Various SVG settings are given by setting the following two variables:

svg_intopts Sets the plot parameters by numbers "svgwidth', "svgheight', "svgfont-

non

size", "svgfont-width", "svguse-color', "svgstroke-width", "svggrid-width", .

non

svg_stropts Sets the plot parameters by strings "svgbackground", "svgfont-family", "svg-
font" . Use command setcs to keep upper and lower case.

Usage

.control

set svg_intopts = (512 384 20 0 1 2 0)
setcs svg_stropts = (blue Arial Arial)
.endc

The following variables may override some of the above mentioned parameters or provide
more details.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is
device dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype The variable specifies the type of the printer output to use in the hardcopy
command. It has to be set to set hcopydevtype=svg.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and
10).

hcopywidth Sets width of the hardcopy plot.
hcopyheight Sets height of the hardcopy plot.

colorN These variables determine the colors used during plotting. Color values may be
entered as RGB values from 0 to 255 (hex or decimal) or stating a color name.
The identification number N may be an integer between 0 and 20. ColorO is the
background, color1 is the grid and text color, and color ids from 2 through 20 are
used for graphs (vectors) plotted. The available color strings are (use the string
inside of the hyphens): "black", "white", "red", "blue", "#FFA500" (orange), "green',
"#FFCOC5H" (pink), "#A52A2A" (brown), "#F0E68C" (khaki), "#DDAODD" (plum),

18.6. OUTPUT-TO-FILE OPTIONS 423

"#DAT0D6" (orchid), "#EES2EE" (violet), "#B03060" (maroon); "#40E0DO0" (turqoise),
"#A0522D" (sienna), "#FF7F50" (coral), "cyan', "magenta", "#666" (gray for smith
grid), "#949494" (gray for smith grid), "#888" (gray for normal grid). Examples

are set color3=blue or set color3="#EE82EE". If no color id is set, then the
above mentioned, predefined set of colors is applied automatically.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS
Windows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot
and Postscript.

The plot-to-file command

hardcopy file vector <vectors> <title text> <xlabel text> <ylabel text>

Usage

.control

* simulation commands here

set hcopydevtype = svg

set svg_intopts = (512 384 20 0 1 2 0)

setcs svg_stropts = (yellow Arial Arial)

set colorl=blue

set color2=green

hardcopy plot_1.svg vss#branch title ’Plot no. 4’
+ xlabel ’Drain voltage’ ylabel ’Drain current’
* plot to screen commands here

.endc

Plot-to-screen

The file contents may be plotted to the screen. For MS Windows you may use the Internet
Explorer or EDGE, linked to the .svg file extension. Under Cygwin or Linux you may
install the program feh for plotting with the following commands:

Plot to screen commands

* for MS Windows only
if $oscompiled = 1 | $oscompiled = 8
shell Start plot_1.svg
else
* for CYGWIN, Linux
shell feh --magick-timeout 1 plot_1.svg &
end

424 CHAPTER 18. NGSPICE USER INTERFACES

18.6.1.2 PostScript

How to prepare a plot

Variables to modify the PostScript plot are listed below. Background and text colors
may be set. The colors of the graphs are then chosen automatically, starting with red.
Valid colors are 0: black 1: white 2: red 3: blue 4: orange 5: green 6: pink 7: brown 8:
khaki 9: plum 10: orchid 11: violet 12: maroon 13: turquoise 14: sienna 15: coral 16:
cyan 17: magenta 18: gray (for smith grid) 19: gray (for smith grid) 20: gray (for normal
grid).

hcopypscolor Sets the color of the hardcopy output byselecting a integer number. If
not set, black & white plotting is assumed with different linestyles for each output
vector. A valid color integer value yields a colored plot background (0: black 1:
white, others see above). and colored solid lines.

hcopypstxcolor This variable sets the color of the text in the Postscript hardcopy out-
put. If not set, black on white background is assumed, if the background is colored
or black, white text is printed.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is
device dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype The variable specifies the type of the printer output to use in the hardcopy
command. It has to be set to set hcopydevtype=svg.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and
10).

hcopywidth Sets width of the hardcopy plot.
hcopyheight Sets height of the hardcopy plot.

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS
Windows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot
and Postscript.

The corresponding input file for the examples given below is listed in Chapt. 21.1. Just
add the .control section to this file and run in interactive mode by

$ ngspice xspice_cl_print.cir
One way is to setup your printing like this will yield a black&white plot:

.control

set hcopydevtype=postscript

op

run

plot vcc coll emit

hardcopy temp.ps vcc coll emit
.endc

18.6. OUTPUT-TO-FILE OPTIONS 425

Then print the postscript file temp.ps to the screen. This may be done by a ngspice shell
command, depending on the operating system and the installed viewer tools (like gv or
others):

* for MS Windows only

if $oscompiled = 1 | $oscompiled = 8
shell Start /B temp.ps

* for CYGWIN

else
shell gv temp.ps &

end

You can add color traces to it if you wish:

.control

set hcopydevtype=postscript

* allow color and set background color if set to value >= 0
set hcopypscolor=1 ; white

set hcopypstxcolor = 3 ; blue

* The colors of the graphs are set automatically.
set xgridwidth=2

set xbrushwidth=3

run

hardcopy temp.ps vcc coll emit

.endc

Then print the postscript file temp.ps to a postscript printer.

You can also direct your output directly to a designated printer (not available in MS

Windows):

.control

set hcopydevtype=postscript

*send output to the printer kec3112-clr
set hcopydev=kec3112-clr

hardcopy out.tmp vcc coll emit

.endc

18.6.1.3 PNG

There is no png driver integrated into ngspice. One may use the gnuplot interface (see
18.7) to create a png file.

426 CHAPTER 18. NGSPICE USER INTERFACES

Usage

.control

* simulation commands here

set gnuplot_terminal=png/quit

gnuplot plot_1 vss#branch vss2#branch

+ title ’Drain current versus drain voltage’

+ xlabel ’Drain voltage / V’ ylabel ’Drain current / uA’
* plot to screen commands here

.endc

This command sequence will generate a png file plot_ 1.png in the current directory. You
will need to have gnuplot installed.

A few remarks are due: Generally you should use a text editor for the input files that
allows to set the character encoding to utf-8. you may give a true pA in the label text,
not only the uA. Otherwise a 11 in the input file may lead ngspice to fail the utf-8 syntax
test. For sake of having not enough characters per line available in the final pdf manual
to fitting the gnuplot command, the line continuation is used in the above example with
a + character in the first column. Unfortunately this has a strange side effect in a real
ngspice input file, in that all letters become lower case in the continuation lines. So better
create a single (long) line containing the complete gnuplot command.

Plotting the png file to the screen can be achieved from within the .control section by

Plot to screen commands

* for MS Windows only
if $oscompiled = 1 | $oscompiled = 8
shell Start c:\"program files"\irfanview\i_view64.exe plot_1.png
else
* for CYGWIN, Linux
shell feh --magick-timeout 1 ©plot_1.png &
end

You will need to install a suitable viewer program (e.g. irfanview or feh).

18.6.1.4 VCD

Value Change Dump (VCD) (also known less commonly as "Variable Change Dump") is
an ASCII-based format for dumpfiles generated by envent based logic simulation. The
eprved command is used by ngspice to print out the digital event nodes versus time.

General Form:

eprvcd nodel node2 .. noden [> filename]

Example usage:

eprvcd 1 2 3 4 5 6 7 8 sO s1 s2 s3 ¢c3 > adder_x.vcd

18.6. OUTPUT-TO-FILE OPTIONS 427

The file addr_ x.ved may be displayd by the following .control section (gtkwave has to be
installed):

Plot to screen commands

* plotting the vcd file (e.g. with GTKWave)
* For Windows: returns control to ngspice
if $oscompiled = 1 | $oscompiled = 8
shell start gtkwave adder_x.vcd --script nggtk.tcl
else
* for CYGWIN, Linux, others
shell gtkwave adder_x.vcd --script nggtk.tcl &
end

with the tcl script to control gtkwave
nggtk.tcl

tcl script for gtkwave: show vcd file data created by ngspice
set nfacs [gtkwave::getNumFacs]
for {set i 0} {$i < $nfacs } {incr i} {

set facname [gtkwave::getFacName $i]

set num_added [gtkwave::addSignalsFromList $facname]

}
gtkwave::/Edit/UnHighlight All
gtkwave::/Time/Zoom/Zoom_Full

18.6.2 Tabulated files
18.6.2.1 Rawfile

This is the traditional spice-compatible output file for simulation data. It will be generated
during simulation if ngspice is started in batch mode (16.4.1) like

ngspice -b -r mysim.raw -o mysim.log myinput.cir

where mysim.raw, following the -r flag, is the rawfile. It may be created as well from
inside a control section using the write command (17.5.96) like

write mysim.raw all

If not all result vetcors are to be stored in the rawfile, the .save command (15.6.1) will
limit the number of vectors to the ones liste after the command. One also may limit their
numbers if the vectors are explicitely stated in the write command

write mysim.raw v(nodel) v2#branch

428 CHAPTER 18. NGSPICE USER INTERFACES

The rawfile consists of an ascii header, followed by the data, either in ascii or binary
format.

filetype This can be either ascii or binary, and determines the format of the raw file
(compact binary or text editor readable ascii). The default is binary.

All simulations (e.g. if .tran follow .ac) will be saved consecutively. If using the write

command, setting variable appendwrite will allow storing several sim outputs in a single
file.

appendwrite Append to the file when a write command is issued, if one already exists.

18.6.2.2 Command wrdata

wrdata generates a file containing simulation data in a tabular fashion. For details please
see 17.5.95. The following variables and options are aknowledged:

appendwrite Append to the file when a write command is issued, if one already exists.

numdgt The number of digits to use when printing tables of data (print col). The de-
fault precision is 6 digits. On the PC, approximately 16 decimal digits are available
using double precision, so p should not be more than 16. If the output number is
negative, one digit less is printed to ensure constant widths in tables.

wr_singlescale The scale vector will be printed only once, if all scale vectors are of the
same length.

wr_vecnames Scale and data vector names are printed on the first row.

18.6.2.3 Command wrs2p, Touchstone File Format Version 1

wrs2ps allows to write a file, containing S parameter data, in the Touchstone File Format
Version 1. For details please see 17.5.97 for the command and 17.9 for generating the
S-parameters.

18.6.2.4 Output redirection

Anything that is printable to the console by a control section command, may be redirected
into a file. See also 17.4.1.

Example usage:

* create a new file and write to it
echo new file > nfile.txt

* append line to existing file

echo second line >> nfile.txt

The following variable is recognized:

noclobber Don’t overwrite existing files when doing IO redirection.

18.6. OUTPUT-TO-FILE OPTIONS 429

18.6.2.5 Command echo

Echos all text, variables and vectors to the screen or the redirected output location (see
also 17.5.23).

Example usage:

* variable

setcs myvar=great

set empty=""

* vector

let lineno=1

* empty line

echo

* vectors and variables may be included

echo This is a $myvar output with $&lineno line(s).
* no line feed, empty var to allow blank
echo -n This is still a $myvar output $empty
echo with $&lineno line(s).

18.6.2.6 Command print

General Form:

print [col] [line] expr

Prints the vector(s) described by the expression expr. Please see 17.5.51 for details.
Expression expr. may be a list of vectors, but also a mathematical expression combining
vectors and constants according to 17.2.

Example:

print v(1) 3%v(2)

The following variables and options are aknowledged:

appendwrite Append to the file when a write command is issued, if one already exists.

moremode If moremode is set, whenever a large amount of data is being printed to the
screen (e.g, the print or asciiplot commands), the output is stopped every screen-
ful and continues when a carriage return is typed. If moremode is unset, then data
scrolls off the screen without pausing.

noprintscale Don’t print the scale in the leftmost column when a print col command
is given.

numdgt The number of digits to use when printing tables of data (print col). The de-
fault precision is 6 digits. On the PC, approximately 16 decimal digits are available
using double precision, so p should not be more than 16. If the output number is
negative, one digit less is printed to ensure constant widths in tables.

430 CHAPTER 18. NGSPICE USER INTERFACES

18.6.2.7 Command eprint

Prints event driven nodes to the console (or a file when using output redirection). See
17.5.26 and 27.2.2 for an example.

18.7 Gnuplot

Plotting with Gnuplot is directly available from the ngspice .control section or interactive
command. Install Gnuplot (on Linux available from the distribution, on Windows avail-
able here). On Windows, expand the zip file to a directory of your choice, add the path
<any directory> /gnuplot/bin to the PATH variable, and off you go... The command to
invoke Gnuplot (17.5.31) is limited to x/y plots (no polar etc.).

General Form:

gnuplot file plotargs

plotargs is a list of vectors to be plotted. file may either be temp or tmp or a file name
(without file extension).

Plot window only:

gnuplot temp vss#branch vss2#branch
+ title ’Drain current versus drain voltage’
+ xlabel ’Drain voltage / V’ ylabel ’Drain current / uA’

ngspice generates temporary data and command files for Gnuplot, calls Gnuplot for ope-
nening the plot windows and then discards the temporary files.

Plot window plus command and data files:

gnuplot newplot vss#branch vss2#branch
+ title ’Drain current versus drain voltage’
+ xlabel ’Drain voltage / V’ ylabel ’Drain current / ulA’

Gnuplot command file newplot.plt and data file newplot.data are generated to stay in the
current directory. The command file may be modified to alter the plot, and then called
by gnuplot newplot.plt to draw the modified plot.

The following variables are aknowledged by the gnuplot command:

gnuplot_terminal May be one of the following: png (write png file and plot to screen),
png/quit (write png file but no plot, see 18.6.1.3), eps (write PostScript file and
plot to screen), eps/quit (write PostScript file, but no plot), xterm (open gnu-
plot in an xterm window).

xbrushwidth Linewidth for graph (see xgridwidth for border and grid). Valid for MS
Windows GUI, X11, gnuplot and Postscript.

xgridwidth Linewidth for border and grid. Valid for MS Windows GUI, X11, gnuplot
and Postscript.

https://sourceforge.net/projects/gnuplot/files/latest/download

18.8. INTEGRATION WITH CAD SOFTWARE AND ‘THIRD PARTY’ GUIS 431

plotstyle This should be one of linplot, combplot, or pointplot. linplot, the
default, causes points to be plotted as parts of connected lines. combplot causes a
comb plot to be done. It plots vectors by drawing a vertical line from each point
to the X-axis, as opposed to joining the points. pointplot causes each point to be
plotted separately.

nolegend Don’t plot the legend, when using the plot command.

18.8 Integration with CAD software and ‘third party’
GUIs

In this chapter you will find some links and comments on GUIs for ngspice offered from
other projects and on the integration of ngspice into a circuit development flow. The
data given rely mostly on information available from the web and thus is out of our
control. It also may be far from complete. For a list of actual links with more than 20
entries please have a look at the ngspice web pages. Some open source tools are listed
here. The GUIs MSEspice and GNUSpiceGUI help you to navigate the commands to
need to perform your simulation. XCircuit and the GEDA tools gschem and gnetlist
offer integrating schematic capture and simulation. KiCAD offers a complete design
environment for electronic circuits.

18.8.1 KiCad

KiCad is a cross platform and open source electronics design automation suite. Its
schematic editor Eeschema fully integrates shared ngspice (see Chapt. 19) as the sim-
ulation tool. On the ngspice web pages there is a tutorial available which presents an
introduction to using ngspice from within KiCad..

18.8.2 Xschem

Xschem is a schematic capture program, it allows to create a hierarchical representation
of circuits with a top down approach . By focusing on interconnections, hierarchy and
properties a complex system (IC) can be described in terms of simpler building blocks.
A VHDL, Verilog or ngspice netlist can be generated from the drawn schematic, allowing
the simulation of the circuit.

18.8.3 GNU Spice GUI

A GUI, to be found at http://sourceforge.net/projects/gspiceui/. It aids in viewing,
modifying, and simulating SPICE CIRCUIT files.

18.8.4 XCircuit

CYGWIN and especially Linux users may find XCircuit valuable to establish a develop-
ment flow including schematic capture and circuit simulation.

http://ngspice.sourceforge.net/resources.html
http://kicad-pcb.org/
http://ngspice.sourceforge.net/ngspice-eeschema.html
http://repo.hu/projects/xschem/
http://sourceforge.net/projects/gspiceui/
http://opencircuitdesign.com/xcircuit/
http://opencircuitdesign.com/xcircuit/tutorial/tutorial2.html

432 CHAPTER 18. NGSPICE USER INTERFACES

18.8.5 GEDA

The gEDA project is developing a full GPL‘d suite and toolkit of Electronic Design
Automation tools for use with a Linux. Ngspice may be integrated into the development
flow. Two web sites offer tutorials using gschem and gnetlist with ngspice:

http://geda-project.org/wiki/geda:csygas
http://geda-project.org/wiki/geda:ngspice and_ gschem

18.8.6 MSEspice

A graphical front end to ngspice, using the Free Pascal cross platform RAD environment
MSEide+MSEgui.

18.8.7 GNU Octave

GNU Octave is a high-level language, primarily intended for numerical computations. An
interface to ngspice is available here.

http://www.gpleda.org/
http://geda-project.org/wiki/geda:csygas
http://geda-project.org/wiki/geda:ngspice_and_gschem
http://sourceforge.net/projects/mseuniverse/
http://mseide-msegui.sourceforge.net/
http://www.gnu.org/software/octave
https://www.dsprelated.com/showarticle/707.php

Chapter 19

ngspice as shared library or dynamic
link library

ngspice may be compiled as a shared library. This allows adding ngspice to an application
that then gains control over the simulator. The shared module offers an interface that
exports functions controlling the simulator and callback functions for feedback.

So you may send an input ‘file” with a netlist to ngspice, start the simulation in a separate
thread, read back simulation data at each time point, stop the simulator depending on
some condition, alter device or model parameters and then resume the simulation.

Shared ngspice does not have any user interface. The calling process is responsible for this.
It may offer a graphical user interface, add plotting capability or any other interactive
element. You may develop and optimize these user interface elements without a need to
alter the ngspice source code itself, using a console application or GUIs like gtk, Delphi,
Qt or others.

19.1 Compile options

19.1.1 How to get the sources

Currently (as of ngspice-27 being the actual release), you will have to use the direct
loading of the sources from the git repository (see Chapt. 32.1.2).

19.1.2 Linux, MINGW, CYGWIN

Compilation is done as described in Chapts. 32.1 or 32.2.2. Use the configure option
--with-ngshared instead of --with-x or --with-wingui. In addition you might add
(optionally) --enable-relpath to avoid absolute paths when searching for code models.
For MINGW you may edit compile_min.sh accordingly and compile using this script in
the MSYS2 window.

Other operation systems (Mac OS, BSD, ...) have not been tested so far. Your input is
welcome!

433

434CHAPTER 19. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

19.1.3 MS Visual Studio

Compilation is similar to what has been described in Chapt. 32.2.1. However, there is
a dedicated project file coming with the source code to generate ngspice.dll. Go to the
directory visualc and start the project with double clicking on sharedspice.vcxproj.

19.2 Linking shared ngspice to a calling application

Basically there are two methods (as with all *.so, *.dll libraries). The caller may link to a
(small) library file during compiling/linking, and then immediately search for the shared
library upon being started. It is also possible to dynamically load the ngspice shared
library at runtime using the dlopen/LoadLibrary mechanisms.

19.2.1 Linking during creating the caller

While creating the ngspice shared lib, not only the *.so (*.dll) file is created, but also a
small library file, which just includes references to the exported symbols. Depending on
the OS, these may be called libngspice.dll.a, ngspice.lib. Linux and MINGW also allow
linking to the shared object itself. The shared object is not included into the executable
component but is tied to the execution.

19.2.2 Loading at runtime

dlopen (Linux) or LoadLibrary (MS Windows) will load libngspice.so or ngspice.dll into
the address space of the caller at runtime. The functions return a handle that may be
used to acquire the pointers to the functions exported by libngspice.so. Detaching ngspice
at runtime is equally possible (using dlclose/FreeLibrary), after the background thread
has been stopped and all callbacks have returned.

19.3 Shared ngspice API

The sources for the ngspice shared library API are contained in a single C file (shared-
spice.c) and a corresponding header file sharedspice.h. The type and function declarations
are contained in sharedspice.h, which may be directly added to the calling application, if
written in C or C++.

19.3.1 structs and types defined for transporting data

pvector__info is returned by the exported function ngGet_Vec_ Info (see 19.3.2.5). Ad-
dresses of the vector name, type, real or complex data are transferred and may be read
asynchronously during or after the simulation.

19.3. SHARED NGSPICE API 435

vector info

typedef struct vector_info {

char *v_name; /* Same as so_vname */

int v_type; /* Same as so_vtype */

short v_flags; /* Flags (a combination of VF_x) x*/
double *v_realdata; /* Real data */

ngcomplex_t *v_compdata;/* Complex data x*/

int v_length; /* Length of the vector x/

} vector_info, *pvector_info;

The next two structures are used by the callback function SendInitData (see 19.3.3.5).
Each time a new plot is generated during simulation, e.g. when a sequence of op, ac or
tran is used, or commands like linearize or fft are invoked, the function is called once
by ngspice. Among its parameters you find a pointer to a struct vecinfoall, which includes
an array of vecinfo, one for each vector. Pointers to the struct dvec, containing the vector,
are included.

vecinfo

typedef struct vecinfo

{
int number; /* number of vector, as position in the
linked 1list of vectors, starts with 0 */
char *vecname; /* name of the actual vector x*/
bool is_real; /* TRUE if the actual vector has real data */
void *pdvec; /* a void pointer to struct dvec *d, the

actual vector */
void *pdvecscale; /* a void pointer to struct dvec *ds,
the scale vector */
} vecinfo, *pvecinfo;

436 CHAPTER 19. NGSPICE AS SHARED LIBRARY OR DYNAMIC LINK LIBRARY

vecinfoall

typedef struct vecinfoall
{

/* the plot x/

char *name;

char *xtitle;

char x*xdate;

char *type;

int veccount;

/* the data as an array of vecinfo with
length equal to the number of vectors
in the plot */

pvecinfo *vecs;

} vecinfoall, *pvecinfoall;

The next two structures are used by the callback function SendData (see 19.3.3.4). Each
time a new data point (e.g. time value and simulation output value(s)) is added to
the vector structure of the current plot, the function SendData is called by ngspice,
among its parameters the actual pointer pvecvaluesall, which contains an array of pointers
to pvecvalues, one for each vector. Logic return values are of type NG_BOOL, which is
typedefed to int.

vecvalues

typedef struct vecvalues {

char* name; /* name of a specific vector x*/

double creal; /* actual data value x/

double cimag; /* actual data value */

NG _BOOL is_scale; /* if ’name’ is the scale vector x*/

NG_BOOL is_complex; /* if the data are complex numbers x*/
} vecvalues, *pvecvalues;

Pointer vecvaluesall to be found as parameter to callback function SendData.

vecvaluesall

typedef struct vecvaluesall {
int veccount; /* number of vectors in plot */
int vecindex; /* index of actual set of vectors, i.e.
the number of accepted data points */
pvecvalues *vecsa; /* values of actual set of vectors,
indexed from 0 to veccount - 1 %/
} vecvaluesall, *pvecvaluesall;

19.3. SHARED NGSPICE API 437

19.3.2 Exported functions

The functions listed in this chapter are the (only) symbols exported by the shared library.

19.3.2.1 int ngSpice_ Init(SendChar*, SendStat*, ControlledExit*, SendData*,
SendInitData*, BGThreadRunning*, void)

After caller has loaded ngspice.dll, the simulator has to be initialized by calling ngSpice_ Init(...).
Address pointers of several callback functions (see 19.3.3), which are to be defined in the
caller, are sent to ngspice.dll. The int return value is not used.

Pointers to callback functions (details see 19.3.3):

SendCh